
1. Nuclear Size 

 
 
We have known since Rutherford’s ! " scattering work at Manchester in 1907, that 
almost all the mass of the atom is contained in a very small volume with high electric 
charge. Nucleus with Z protons and N protons. A = Z + N  nucleons. 
 
A typical atom radius is a few !10"10

m  (Angstroms). The nuclear radius is a few 
!10

"15
m  (Fermi). 

 

 



Nuclear radius: We will see that almost all nuclei have a similar nuclear density. 

Therefore the nuclear volume 
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Experimental methods to measure two types of nuclear distributions: 

1. The Proton distribution (also the charge distribution) “nuclear charge”. 
Use the Coulomb interaction between the nucleus and charged leptons (e! , 
µ! ) 

2. Nuclear matter (protons + neutrons) 
Use probes which interact via the Strong interaction, and at high energies so 
that the weaker coulomb interaction can be ignored. Use p , ! , ! , … 

 
1.2 Nuclear Matter Radius from total reaction cross-section 
A crude method used now for very exotic, short-lived nuclei. Consider a classical 
collision of two spheres (ignore the Coulomb force). 
 
Take a projectile with radius R

1
, striking a stationary target with radius R

2
. The 

distance between the centers of the nuclei is b , the impact parameter. If b > R
1
+ R

2
, 

no interaction occurs, and the projectile simply continues without any deviation. If 
b < R

1
+ R

2
, something happens. e.g. elastic scattering, fusion of the two nuclei, 

exchange of nucleons, … 
 
Whatever happens, it interrupts the path of the projectile and the position of the target. 
We define the geometric limit for the effective area that will remove particles from 
the beam 

!
T
= " R

1
+ R

2( )
2  

 

Example: measuring size of 11Li  !
1
2

~ 87ms( ) . 

 
Take a thin slab of, say, carbon with thickness x , area A  (the area drops out later), 
and n  nuclei per unit volume. Each nucleus within this slab has an effective black 
area with cross-section !

T
. Let there be a fast beam of 11Li  incident on this slab, with 

a flux of N
0

nuclei per second. On the other side of this slab, we have a 11Li  flux of 
N
0
! "N , where !N is the reaction rate within the slab. 

 
The target is thin so that there are no shadowing effects, i.e. nuclei hiding behind 
other nuclei. If this weren’t the case, there would be an exponential factor to account 
for this. 
 
The effective black area across A = !

T
" number of nuclei 
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The chance of a beam particle not getting through the (thin) target is the black area / 
the total area = !

T
nx  

Therefore the reaction rate is: 
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We can measure !N  and N

0
, and we know n  and x . Hence we can calculate !

T
. 
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has dimensions of area, and order of magnitude R
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m , i.e. 6 fm . 

Remember that R = 1.2A
1
3 fm . So 
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A word of caution: the nucleus does not have a well-defined surface. 
 

 
 



 
The actual density is parameterized by quantities such as the “half-value radius”; the 
“skin thickness” (10%  90% range) and the “mean square radius” 
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This is equal to 
3

5
R
2  for a billiard ball. 

This is even worse for 11Li… 

 
 
The differential cross-section 
This is used to describe the scattering of particles. 



 
d! is the effective area of the target nucleus that scatters a particle into a cone of solid 
angle d!  in direction ! . 
 

Total scattering cross-section 
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1.3 Nuclear Charge Distribution!

ch
r( )  

For stable nuclei, the best way to find this is by electron scattering. To measure the 
size of any object, we observe radiation scattered by it (e.g. visible light, X-rays 
[crystal lattice], electron microscope). 
 
Details smaller than the wavelength / the de Broglie wavelength cannot be resolved, 
so to see details of nuclear charge distributions we need electrons where ! << 10 fm . 
This means that the electron must be in the relativistic regime. For high energy 
electrons, the total energy E ! pc . The rest mass energy of the electron is 
0.511MeV ,which will turn out to be a lot smaller than that due to momentum. 
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NB: 

 
!c = 197.3MeV fm . 

 
So E >> 100MeV  for the required wavelength, to see the details of the nucleus. 
 
An analogue to electron scattering from a nucleus is light scattering around a 2D 
black disk. 
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gives the point where the first dark point is on the curve. 
 
Electron scattering as a function of angle does show a diffraction-like pattern, but the 
first minimum does not fall to 0 as the nucleus is not an opaque disk with a sharp 
edge. 
 

 
 
 
 
Outline of e!  scattering theory (ignore electron spin) 
According to quantum theory, the electron scattering probability is controlled by an 
“overlap integral” containing the initial and final states of the electron and the 
scattering potential V r( ) . 
 
Matrix element Mif , where i  stands for initial, and f  for final. 
 

Mif = ! f *V r( )! idV"  
 
In words, “V r( )  acting on !

i
 converts it into a superposition of outgoing scattered 

waves. Mif  picks out the amplitude of component ! f .” 
 



The scattered intensity 
d!
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#( )  is thus proportional to the matrix element squared, 
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Incoming electron has 

 
pi = !ki . !

i
= e

+ i ki "r  

Outgoing electron has 
 
pf = !k f , ! f * = e

" i k f #r  

 
We introduce the momentum transfer q = ki ! k f . 

For elastic scattering, ki = k f = k  (to a good approximation). 
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This is a 3D Fourier transform of the potential V r( ) . 
 

(1) Special case: point nucleus. 

V r( ) =Coulomb potential energy =
Ze
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It turns out that 
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This is the Rutherford scattering formula.  
(2) Real (extended) nucleus 

Take a non-spherical nucleus, with charge density !
ch
r( ) . Let there be a small 

box of charge r '  from the centre of the nucleus, with volume dV ' . Look from 
a distance r  from the centre of the nucleus. The box will be at distance r ! r ' . 
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(Normalization: !
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r '( )dV '" = 1 ) 

After some manipulation, we get: 
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where the dV '  is over the nuclear volume. The first two terms are for the point 
nucleus result. The integral is a Fourier transform of the charge density 
distribution. This is called the “electric form factor of the nucleus”, and can be 
written F q( )  (actually a function of q2 ). 

 

In summary: probability of scattering at angle !  =
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Note: 
F q( )  depends on the electron beam momentum and scattering angle only through the 
momentum transfer q . So we can combine data from different electron energies. (i.e. 
we can combine data from different laboratories, even though it’s been done at a 

different energy). This is done by plotting 
d!

d"
 against q . 

 
Since F q( )  is the Fourier transform of the charge density distribution !

ch
r '( ) , then 

we get !
ch
r '( )  by an inverse transform of F q( ) . 

In principle, we need to know F q( )  up to q = ! . This is not possible – this leads to 
some error on the charge density at small values of distance from the nuclear origin 
r ' . 
 
Conclusions 
From electron scattering data on stable nuclei: 

1. The charge density !
ch
r( )  has similar central density in all nuclei. So 

nucleons like to keep a particular distance from each other – like atoms in a 
solid. The nucleon-nucleon potential must look like this: 

 
2. Surface thickness is similar in all nuclei, ~ 2.3 fm  for 10%! 90%  of the 

central density. 



 
1.3 (ii) !

ch
r( )  from perturbations of atomic energy levels 

The finite spread of the nuclear charge modifies the Coulomb potential in which the 
atomic electrons move – but only within the small volume that the nucleus occupies. 
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for point nucleus. V r( )  for finite nucleus – shallower than V
0
. This reduces the 

binding energy of an atomic electron by !E . 
 
1st order perturbation theory: 
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where !  is the volume. 
 
Since the electron wavefunctions vary only slowly over 10!15

m  (Bohr radius is more 
like 10!10

m  for electron wavefunctions), then we can approximate the wavefunction 
at r  as !

e
r( ) =!

e
r = 0( ) . 
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where !

e
0( )

2  is the electron density at the nucleus. See Examples Sheet 1 for the 

math behind this. r2 is the mean square charge radius of the nucleus. 
 
NB; it is only the s electron shells which will experience this shift, as they are the 
only ones in the nuclei range. 
 



 

 
If an electron drops down from the L-shell to the K-shell, then an X-ray will be 
emitted. 
a) Measure !E  of k-shell electrons (measure the x-ray energies). 
 
Look at the 6s and 6p shells. Fire a laser at them… 
b) Measure !E e.g. of the 6s valence electron by laser spectroscopy. 
 
Look at Muon energy levels close to the nucleus. Change between the 2p and 1s 
shells, with the emission of an X-ray. 
c) !E  of “muonic” atoms (measure muonic X-rays). 
 
1.3 (ii) a) X-ray isotope shifts 

 



Atomic energy levels. The first is for a point nucleus of charge +Ze , the second for a 
real nucleus with area A  and charge +Ze , the third for a nucleus with A '  and 
+Ze (an isotope of the same element). 
 
!E  or p-electrons ! 0  because ! p
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" 0 . 
 

!E = "E
A '
# "E

A . 
 
This has 3 problems: 

1. Shift is small 10!5( )  because of small electron density at nucleus. 
2. We don’t have a point nucleus as a reference. 
3. Calculations for the electron wave functions !

e
r( )  in heavy elements are not 

sufficiently accurate to estimate the K X-ray energy of the theoretical point 
nucleus (one part in a million, 10!6  precision). 

 
But what can be done is a comparison of the r2 between the different isotopes.  
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!"
A 'A  is called the isotope shift of the X-ray lines.  ! r

2
A 'A

 is the change in mean 
square charge radius between isotopes. 
 
 

 



 
We can see that the increase of r2  with N is seen  proton distribution does 
increase as neutrons are added. This is because of the strong attraction between 
protons and neutrons. 
 

1. Fractional shift = 0.15eV
100keV

= 10
!6 . 

2. Proton distribution does spread out as neutrons are added  because of the 
strong interaction between protons and neutrons. 
But: 

3. Despite Krane’s comment, the rate of increase is about half that expected from 
R = 1.2A

1
3 fm. 

(Mass range of A is so limited across Hg isotopes that almost any power law of A can 
fit) 

 
 
1.3(ii) !"  for valence electrons 
The shifts that we will be looking at are much smaller than those before, as 
!
6s
0( )

2

<< !
1s
0( )

2 , and !E ~ 10"6
eV  (compared with 0.15eV  for X-rays). 

However, the transition energies are ~ 3eV  (not 100keV ), and these shifts can be 
measured with great precision by laser spectroscopy. 



Tunable laser, excites an electron from the 6s to 6p level. Resonant excitation will 
lead to the emission of a fluorescent photon, which can be detected with a 
photomultiplier tube. 
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Isotope shift between peaks. 
 
We must also consider the electron density for the upper state. 
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 + small mass shift. 

Where ! " a( )
2  is the chance in electron density between the two atomic states. The 

small mass shift is connected to the change in electron reduced mass. 

If µ = reduced mass, then 1
µ
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1

m
e
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1

M
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Example: Zinc isotopes (see above diagram). 

- The frequency shift 
!E

E
"
700MHz

10
15
Hz

~ 7 #10
$7 . 

- Odd-A nuclei have several components (hyperfine structure) 

- If r2 ! A
2
3 , then we should have approximately evenly-spaced peaks – but 

they aren’t in Zn. 



 

 
 
 



 
Notes: 

1. As neutrons are added along isotope chains (constant Z), the proton 
distribution expands but only at about half the rate expected from 

R = 1.2A
1
3 fm .  nuclei with a neutron excess must develop a neutron-rich 

skin which is not seen in stable nuclei. 
2. Not all nuclei are spherical. Deformed nuclei will have noticeably larger mean 

squared charge radii r2  - e.g. light Hg isotopes. (2 or 3%) 
 
1.3 (ii) (c) Muonic Atoms 
The muon is a lepton with 207 times the mass of the electron. If muons from a 
decaying pion beam are stopped in a target of your chosen isotope, the negatively-
charged muons spiral down through Bohr-like orbits emitting photons (X-rays) finally 
from the 2p! 1s transition. 
 
These orbits are much smaller (by a factor of 1/207) than electron orbits. Bohr radius 
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In 

82
Pb  the muon 1s orbit is inside the nucleus. 

 
Thus !
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 and muonic X-ray shifts due to nuclear size effects are 
substantial. 
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Wavefunction calculations are much better (we can ignore the electrons, to a good 
approximation). They are accurate enough to derive absolute r2  for the nucleus. Up 
to now, we have only been able to compare isotope sizes. 
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The approximation that the muon density is constant across the nuclear volume no 
longer holds and proper wavefunctions are used. 
 
Muonic X-ray energies: 
~1MeV  in Fe 
~ 55MeV in Pb (55, or 5.5?) 
Comparable to ! -rays, so detectors are accurately calibrated with ! -ray sources. NB: 
stable isotopes only. 
 
Example: Fe isotopes 



 
 
The 2p level has a fine structure, P

3/2
 and P

1/2
, which decay down to the 1s  s

1/2
 state. 

Ratio of 2 j +1( ) = 2 :1 , which explains the relative heights of the peaks. 
 
1.4 Nuclear Matter Distributions 
1.4 (a) Elastic Scattering of Protons, ! ’s 
Probes must interact via strong force to see both protons and neutrons: p ! n  and 
p ! p  forces are very similar (the neutral and charged pions have slightly differing 
masses). 
The scattering potential looks like this: 

 



The Coulomb potential is V
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r
MeV  (when it is in fermi). 

If r > R , Gauss’s law tells us the scattering will be the same as a “point nucleus” – 
Rutherford scattering. 
 
If the projectile is high enough to overcome the Coulomb repulsion, strong attractive 
nuclear forces come into play. Clearly at this point, we should expect deviations from 
the Rutherford cross-section !

R
 because other outcomes (e.g. absorption) are 

possible. 

 
 
The analysis of these data is far more difficult than electron scattering because of the 
more complex nature of the strong interaction. 
 
At low energy, where absorption of the particle is strong, we can only measure the 
matter radius (nucleus like a black disc) 
Example: 209B !,!( )  (alpha scattering on Bismuth) 



 
 
At higher energies, where nuclear matter appears more 
transparent, the scattering pattern has a fraunhoffer-like 
appearance which provides information on the internal 
structure of the nucleus – the internal density distribution. 
Example: 40Ca !,!( )  (see image on left). 
 
1.5 Summary of results: 
(i). Stable nuclei (along the line of stability): charge and 
matter radii are very similar. This is because the neutron-
proton attraction keeps them in the same place. 
(ii) Nuclei with large neutron excess appear to have a 
neutron-rich skin (even a halo in 11Li ). (similar things 
appear to happen with proton excess, but that data’s only 
just coming in.) 
(ii) Central density is similar in all stable nuclei. 
(iv) All have a similar surface diffuseness. 
 
We have a common description of the charge distribution: 
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R = 1.2A
1
3 fm  

a = 0.6 fm  - controls surface diffuseness. 


