
8. Lattice Vibrations of Solids 
8.1 Classical Theory 
Let r
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n
 represent positions of atoms. 

Need to solve Newton’s law 
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 is the equilibrium position, and x
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displacement from equilibrium. So; 
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We are looking at the potential V r( )  of the atom, i.e. that where it is at equilibrium – 
at its’ lowest potential. x

i
 is a small displacement around this, i.e. that part of the 

curve which is mostly linear. If we increase the size of it, then we get into the non-
linear part of the curve. 
 
From 
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" , we get 3N  equations. We can solve them through 

normal mode analysis, where we assume that all the atoms vibrate with the same 
frequency in the mode. In general, there are 3N  normal modes of vibration. !
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8.2 Quantum Treatment 
Here we have 
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but the same modes as in the classical case. In the classical treatment, we got the set 
of frequencies !

i
, i = 1,2,..., 3N , but now we have to quantize. 

 
8.3 Simplest Theory of Heat Capacity 
This is a classical theory. It starts from the observation that each oscillator has 
classical equipartition energy = k

B
T  (two degrees of freedom, KE and PE, each of 

which has E = 1
2
kT ). There are 3N  such oscillators. 

Energy of the solid = E = 3Nk
B
T . 

So the heat capacity C =
dE

dT
= 3Nk

B
. 

So the heat capacity should be independent of temperature. It is often referred to as 
the Dulong and Petit law, and is only valid at high temperatures where classical ideas 
are valid. 
 
8.4 Simplest Quantum Theory of Heat Capacity – Einstein Theory 
This theory treats each normal mode as a quantum SHO, but Einstein assumed that all 
the oscillators, i.e. the 3N  harmonic modes, have the same frequency !

E
. 
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where n  is the average number of quanta that are associated with each mode, and is 
given by 
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The quanta of lattice vibrations are called Phonons, c.f. the photons of EM radiation. 
So now we get: 
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The * is at 
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~ 1 . The curve starts off at 

 

C ~
1

T
2
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3Nk
B

. 
Exponential fall off at low T – this is not seen in experiments. 
 
c
V
~ T

3  at low T – not all of the 3N SHO have the same frequency. It works fairly 
well for diamonds, but not much else. 
 
8.5 The Debye T 3  Law 
Debye recognized that only low frequency modes would be thermally excited at low 
temperatures. 
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We know that the low energy (frequency) phonon modes are sound modes. So we 
need to innumerate the number of sound modes that might exist within a solid. 
Consider a cube with sides L. Sound waves are standing waves inside the cube. 

Through the usual arguments, we have 
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 values between k  and k + dk . 

There are 3 sound wave modes for each k value. There are 2 modes corresponding to 
transverse sound, where the displacement of the atoms is perpendicular to their 
direction of motion. There is one mode up, and one down, in this case. You can also 
have one mode corresponding to longitudinal sound, where the displacement is 
parallel to the k-vector. 



In an isotropic solid, transverse modes have ! = V
t
k  whereV

k
 is the velocity of the 

transverse waves (the same in an isotropic solid). Longitudinal have 
 
! = V

!
k , where  

 
V
!
 is the velocity of longitudinal sound. 

In air and liquid, sound is always longitudinal. Transverse sound is only found in 
solids – it can be used as a definition of what a solid is. It only happens when the 
material can resist shear. 
We can use these to count the number of modes between !  and ! + d! . 
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Define effective average velocity 
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. This has no physical significance – 

it just simplifies the equations. 

Energy of the modes at lower temperatures 
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V here is volume. 
Ignore the zero point energy.  Upper limit over n  can be taken to be infinite. 
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This is very similar to what we had for black body radiation, with the exception of 
degeneracy of 3 rather than 2. For BBR, let V ! c . 
So the heat capacity at lower temperature is: 
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8.6 The Debye Interpolation Scheme 
The above approach, the low temperature approach, fails for two reasons: 

1) As !  increases, k  increases, !  decreases. Eventually will get to the point 
where ! ~ a  the inter-atomic distance. Then the modes are no longer simple 
sound waves. 

2) Put upper limit on the !  integral to infinity – this is wrong as it suggests that 
the number of modes is infinite. The correct number is 3N . 
(NB: for BBR, the number of modes is infinite.) 

 
Debye put an upper limit on the integral. 
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 is the Debye cutoff frequency. 
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where 
V

N
~ a

3 , where a is the interparticle spacing. 

!
D
~ a  (of the order of a) – the lattice spacing. 

Therefore the cutoff wavelength !
D

 ~ interatomic spacing. 
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 is of the order of the most energetic phonon energy. 
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Drop the ZPE as it is not temperature dependant and does not contribute to the 
specific heat. 

 

E ! ZPE =
3V!

2" 2
V
3

d#
# 3

e
!#$ !10

#D

%  

 

c
v
=
dE

dT
=
3V!

2! 2
V
3

" 2
e
#!"$

e
!"$ #1( )

2

!"
k
B
T
2

0

"D

%  

Make the substitution 
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The integral is just a number – it is a fraction of 
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NB: as T ! 0  the upper limit can be approximated by infinity  then have a pure 
number c

v
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where 3Nk
B

 is the classical value. The RHS is a universal function of T
!

D

, and is the 

same for all materials. 

 
T
3  at lower temperatures. 

This agrees reasonably well with experiments for most solids. 
 
Periodic Boundary Conditions 
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a) Box Boundary Condition 
! = 0  at x = 0 , x = L  

! x( ) =
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sin kx   standing wave 
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b) Periodic Boundary Conditions 
! x( ) =! x + L( )  

! x( ) =
1

L
e
ikx   traveling waves. 
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K-Space 
Box Boundary Condition: 

0 missing. 
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Periodic boundary conditions: 

Spacing is 
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Periodic boundary conditions can be realized by bending the system into a ring of 
circumference L. 
3D  periodic boundary conditions. 
! x + L( ) =! x( )

! y + L( ) =! x( )

! z + L( ) =! z( )
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!,m,n! 0,±1,±2,±3,... 
Number of states between k  and k + dk  = number of states in a shell of radius k  and 

thickness dk  = 4!k2dk
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Box BC: 
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