
5. The Ideal Fermi Gas at Low Temperatures 
(M. 11.5, B&S 10.3-4, K&K p183-184) 
Applications: 

- Electrons in metal and semi-conductors 
- Liquid helium 3 
- Gas of Potassium 40 atoms at T = 0.3µk  
- Electrons in a White Dwarf star 
- Neutrons in a Neutron star (pulsar) 

 
5.1 Ideal Fermi Gas at T = 0  
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As T ! 0 , f !( ) = 1  if ! < µ , or f !( ) = 0  if ! > µ . 

 
! f  equals the chemical potential µ  at T = 0 . 
All the lowest energy states are occupied. Highest occupied state has energy µ . 
For particles in a box: 
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where the 2 is due to spin degeneracy, = 2s +1  for double occupancy of k space (up 
and down). 
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The surface of a sphere is the boundary between occupied and unoccupied states = 
Fermi surface. 

Energy of particles on the Fermi surfare = ! f =Fermi energy 
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surface. 

 
pf = !k f : defines the Fermi momentum. 

 
5.2 Alternative derivation of k f , ! f  
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where the 2 is once more due to spin degeneracy. 
So: 
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Or work with energy: 
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! "( ) = 2g "( ) = number of states allowing for spin degeneracy. 
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V = 1 for “unit volume”. 
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5.3 Free Electron Theory of Metals 
Conduction electrons !  ideal Fermi gas. 
Approximations: 

1) Positive ions are roughly equal to a uniformly distributed positive charge 
distribution  potential well of finite depth. 

 
2) Ignore the Coulomb repulsion between electrons 

– justification of approx. difficult 
– departure are visible from ideal gas behavior 
- Free electron theory is a good starting point for a more relativistic theory. 
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e.g. for Potassium 1.40 !1028  atoms per metre cubed. = 1.402 !1028  electrons 
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quantum effects. 
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Define Tf = degeneracy or Fermi temperature =
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kB
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Tf is the temperature at which classical gas of particles would have energies of 
! f . 

Tf ! 2.5 "10
4
k  for K. 

At T = 0  the electrons near the Fermi surface have kinetic energies 
corresponding to classical temperatures of 104 k . The Fermi velocity 
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Large but still much less than the speed of light. 
Relativistic corrections are only needed for heavy metals. 

 
5.4 Ideal Fermi Gas at T > 0  

 
If T << T

F
 (e.g. metal at room temperature) a few electrons in the neighbourhood of 

the Fermi surface are parallel to the state above ! f . 
What is µ ? 
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- fixed µ . 
Change sum to an integral 
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Mandl problem 11.2 
If T << Tf , µ ! " f  
For metals at 300k , can take µ = ! f . 
Because the electrons are crammed into their lowest possible energy states and this 
dominates their behaviour, an ideal Fermi gas at low temperatures is said to be highly 
degenerate. 
 
5.4.1 Heat Capacity of Fermi gas T << Tf  
Exact calculation: 
Number of electrons ! " ! + d! = f !( )g !( )d!  
Energy of electrons ! " ! + d! = ! f !( )g !( )d!  
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This is the exact result. 
Approximate calculation – ignore changes in µ . 

 
Now looking at the regions between the solid line, and the vertical line at µ . 



Electrons from the left side of the line ! < ! f( )  are thermally excited to the region to 
the right side of the line, ! > ! f . The two regions are the same area. 

Let them be triangles. 
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What is g ! f( ) ? 
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Eliminate V: 
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Early success of quantum theory of Fermi gas was to explain why such a large 
contribution to the heat capacity was not seen. 

Quantum theory reduces classical value by a factor 
T

Tf

. Only a fraction of the 

electrons N
T

Tf

 are involved in the heat capacity. 

 
Observation of Electronic Contribution to C

v
 

It is difficult at high temperature because contributions are ~ 3Nk
b

 from lattice 
vibrations. At low temperatures, lattice vibrations contribute ~ T 3 . 
C
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Slope is ! . 
For potassium, ! theory = 1.67mJ mol

"1
k
"2 , ! exp eriment = 2.08mJ mol

"1
k
"2 . 

Discrepancy due to the failure of the assumption of the free electron theory. We 
ignored: 

a) Periodic potential of the positive ion cores – these produce band structure 
effects. 

b) Coulomb repulsion between electrons 
 
5.4.3 Paramagnetic Susceptibility of Conduction Electrons 
T << T

P
 - temperatures have a small effect. Assume T = 0 . 

 
B = 0  
Previous diagram, split into up and down, and rotated through 90 degrees. 
Spin ups have µ
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Apply a field B along z: dE = !µ " B  where µ  is the magnetic moment of the 
electron. 
dE = !µ
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B
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Positive for up spins, negative for down spins. 

 



Spin up electrons in the red area move into the blue area, where the energy is reduced. 
If µ

0
B << ! f , one can approximate the shaded area by a rectangle 

For a metal, B << 3!10
4
T  - an enormous field. 

 energies of the highest occupied state are the same as before = ! f . 
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Note that this is independent of temperature. 
Cf. the Curie law result for classical spins: 
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Like the heat capacity, the magnetic susceptibility is reduced by a factor of order 
T
Tf

 from the classical result. 

!
p  is comparable to the Landau diamagnetic susceptibility. 

For free electrons, 
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 makes ! p  hard to measure. 
Metal 10

5 ! "
p
 (experiment) 10

5 ! "
p
 (theory) 

Li  2.5 1.01 
Na  1.4 0.83 
K 1.1 0.67 
Rb 1.0 0.63 
Cs 1.0 0.58 
 
Discrepancies are due to the neglection of band structure effects, as well as Coulomb 
repulsion of the electron. 
 
5.4.4 X-Ray Emission Spectrum 



 
The lines are electron energy states in iron cores. The curve/line is the conduction 
electrons. 
Knock out electrons from the K-shell, then (say) conduction electrons fall down into 
vacant states emitting photons. 
Spectrum of emitted photons depends on the number of electrons of each energy. 

 
This plot is the intensity of the emitted X-rays (proportional to g !( ) ), vs. the photon 
energy. There is a sharp cut-off at the Fermi energy. 
 
5.5 Liquid 3He  
This is the Fermi form of a He ion. It is a byproduct of the nuclear weapons program. 
Phase diagram for most substances: 

 
S = Solid 
L = Liquid 
G = Gas 
C = Critical Point 
T = Triple Point 
The substance is only crystal at T = 0 . 
For 3He : 



 
At lower T, the liquid acts as a degenerate Fermi liquid. It turns into a solid at around 
34 Atmosphere. The minimum point of the solid curve is at around 1k. 
S = Solid BCC. 
 

1) System remains liquid down to T = 0  at low pressures (at least for pressures 
less than 34 atmospheres.) 
Quantum effects cause this. 
Solid: atoms localized  positions are known. 
 large uncertainty in momentum  large momentum. 

 large kinetic energy 
p
2

2m
. This will encourage a liquid to form. This can 

overcome the energy level gained by going into a crystalline structure, as the 
liquid state now has lower energy. 

2) Liquid solid phase boundary at low T has 
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liquid more dense than solid (ice floats on water). 
For 3He , V
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 i.e. contracts on freezing like most materials. But S

L
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the liquid is more ordered than the solid. 
3
He  is a Fermi liquid at low temperatures, and is very ordered at low 

temperatures. Particles in the Fermi sphere are filled by 3He  particles with up 
and down spins. (i.e. each k state is filled. The particles are not so ordered.). 
Each k state less than k f  contains two atoms, one with spin up, and one with 
spin down. 
Ordering is in k-space, not real space. 
For solid, the spins (which lie on the nuclei of the 3He ) are disordered – each 
spin can be up or down because the atoms are located on crystal sites. This 
gives the contribution to the entropy of Nk

B
ln2  ! = 2

N( )  S = k ln!( ) . 
At 1mK , the solid undergoes a magnetic ordering transition to the anti-
ferromagnetic phase, S
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What is the Fermi temperature T

F
 of 3He ? 

At P = 0 , n = 1.6 !1028m"3 . 
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For T << Tf , 3He  should behave like a Fermi system. C
V
= !T .  (no lattice, 

therefore no T 3  term as in metals.) 

 
D = Degenerate Fermi fluid. 
T < T

S
, liquid makes a transition to the A-phase of superfluid 3He . 

 
5.6 Electrons in Stars 
(A.C. Phillips, “The Physics of Stars”) 
 
What is the sun made of? 
Mostly Hydrogen. 
 
Atomic hydrogen? 
No – temperatures are too high. The proton and the electron have been dis-associated, 
i.e. it is a plasma. 
 
How hot is the sun? 
Central temperature 107 k . 
 
Do the electrons form a degenerate Fermi gas, i.e. is T << Tf ? 

Mass of the Sun is roughly 2 !1030 kg . 
The radius of the sun is 7 !108m . 
Assume that the sun has a uniform density (not true.) 
The electron density in the Sun is equal to the number of Hydrogen atoms, which is 
the same as the number of Protons. So: 
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Therefore the electrons in the sun are classical. 
 
Why does the sun not collapse under its own gravity? 
Partly gas pressure, but also the outward pressure of the radiation. 
 
Where do we find degenerate Fermi gas in stars? 
We need to increase the density. So look at dense stars – neutron stars, or white 
dwarfs. 
 
5.6.1 White Dwarf Stars 
Entering the white dwarf phase in the ultimate fate of light stars such as the sun. 
H  burns at 107 k  (we need the kinetic energy to overcome the coulomb repulsion). 
After all the H  has burnt, the star shrinks and heats until He  burns to Carbon at 
10

8
k . If the star is then heavy enough, it can progress to burn C at 5 !108 k , etc. 

 
So the temperature needs to rise in order to set kinetic energies to overcome the larger 
coulomb barrier of the heavier nuclei. 
 
But suppose that the star never gets hot enough for Helium to burn – or for Carbon to 
burn? What steps come from shrinking the star? 
Inward gravitational pressure is balanced by pressure from the degenerate electron 
gas.  white dwarf  electron gas. 
White dwarf slowly cools and dies. 
If mass = M

s
, what is its’ radius R? 

Gravitational pressure = f G,Ms ,R( )  
Pressure = force per unit area 
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Assume the star is of constant density. 
Gravitational potential energy: 
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This inward gravitational pressure is counteracted by pressure being exerted outwards 
(excited by electrons). 
What is the pressure of the electrons? 
Assume T << Tf , and take T = 0 for simplicity. 
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has been used to eliminate the volume term V. 
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N is the number of electrons in the star =
M

s

2M
H

, where M
H

 is the mass of a H atom. 

For either carbon or helium white dwarfs, these will be approximately one electron 
for every 2 nucleons. 
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NB: this is the pressure pushing outwards. 
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(the more massive the star, the smaller R gets.) 
For example, 40EriB: 
Ms ! 10

30
kg  

Rtheory = 7.9 !10
6
m  

R
actual

= 8.7 !10
6
m  

Note that this is around the size of the Earth. 
 good agreement. 
R !  as M

s
! . 

 R ! !
2 , therefore QM effects work on enormous length scales. 

Check assumptions that electron gas is degenerate: 
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 109 k  
But T ~ 107 k . 
Therefore T << Tf , i.e. cannot be hot enough to burn He or C. 

Now, P
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i.e. electron pressure increases faster at small R. 
Electron pressure P

electrons( )  increases faster at small R. It ought to be able to resist 
collapse of heavier: wrong. 
Work out Vf  for electrons at Fermi surface for Tf = 10

9
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= kBTf = 87keV  
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So what’s the problem? – electrons are relativistic and it is important to treat them as 
such for heavier stars. 
(non-relativistic approximation is OK for white dwarfs) 
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~ electron pressure 

Gravitational pressure Ms

2

R
4   therefore for heavy stars, gravity will always win if 

1.4. 
For heavy stars: 

 
1.4 ! M

!
  star becomes a neutron star 

 
5.8 ! M

!
  star becomes a black hole. 

 
5.5.2 Neutron Stars 
When mass is 

 
> 1.4M

!
, then the star goes through all the stages of nuclear fusion to 

reach iron core. 
 
Then get catastrophic collapse via a supernova explosion – this releases some of the 
star’s original mass. 
As star collapses, electron density n rises. 

Electron KE rises ~
1

v
1
3

 (relativistic). 

Therefore KE becomes so high that inverse beta decay occurs. 
e
!
+ p" n + #  

Also, atomic nuclei break up – left with a giant lump of nuclear matter. 
Predominantly made of neutrons – only a few e and p left. 
Gravitational pressure can now be resisted by the pressure of gas of degenerate 
neutrons with 
T ~ 10

7
k  

(Star is initially at 104 k! 10
8
k  in 100 years  neutron star or pulsar.) 

Solid crystalline crust of nuclei and neutrons, with a neutron fluid inside. 
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For ms ~ 3!10
30
kg  

 
~ 1.5M

!
, R ~ 10km   

N

V
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! f = 1.8 "10
#11
J = 0.11GeV  

Vf =
2! f

mn

= 1.5 "10
8
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#1  

i.e. about ½c. So it is non-relativistic – only just. 
For heavier stars, relativistic effects become more important – as with white dwarfs 
and electrons. 
Eventually, pressure of neutrons can no longer withstand gravity. 
M

max
~ 5.8 solar masses. 

Collapse continues  black holes. 


