
PC 3151 – Bose and Thermal Gases 

4. The Bose-Einstein (DE) and Fermi-Dirac (FD) Distribution 
M 11.1-4, B&S 9.7, 9.9, 10.1-3, K&K 5-6. 
Quantum effects become important if the typical distance d between atoms is d ! "

T
. 

Remember than !
T

 depends on temperature, so that at low temperatures quantum 
effects also become important. Approach the problem via distribution functions. 
 
 
4.1 Average Number of Particles f !( )  
Define f !( )  as the average number of particles in a single particle state of energy !  
and temperature T . 

For Bosons, f !( ) =
1

e

!"µ( )
kBT "1

. This is the Bose-Einstein Distribution Function. 

For Fermions, f !( ) =
1

e

!"µ( )
kBT +1

. This is the Fermi-Dirac Distrubition Function. 

In both cases, µ  is the chemical potential. 
 
What determines the chemical potential? 
The system has a fixed number of particles N. 

N = f !( )
all states

" =
1

e
# !$µ( ) ±1all states

"  

The energies !  of the states are known, and the temperature is known, so µ  can be 

calculated in terms of N – or usually N
V

. 

 
For ! " µ >> k

B
T , f !( ) = e"# !"µ( )  for FD and BE. They go towards the classical line 

(C). 
The remainder of the course is devoted to the implications of f !( ) . 
 
4.2 The Derivation of Fermi-Dirac Distribution Function 
Consider spin ½ particles for simplicity. Consider a single-particle state of energy ! , 
for either spin up or spin down. Take the reservoir to be all the other single particle 
states, i.e. the gas as a whole.  
Subtle point: states are distinguishable, particles are not. 
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1 !  µ ! "  
e
! µ"#( )

$
G

 

!
G
= 1+ e

" µ#$( )  
NB: lower case !  now refers to a single state, not a single particle. 

(Grand canonical partition Z
G
= e

! µNs "Es( )

Ns ,S( )
# ) 

We are considering one state and N
s
= 0,1 . 

We are after the average number of particles in the state: 
f !( ) = Ns p Ns ,Es( )

Ns ,Es

"

= 0 #
1

$G
+1#

e
% µ&!( )

$G

=
e
% µ&!( )

1+ e
% µ&!( )

 

Therefore f !( ) =
1

e
" !#µ( ) +1

. 

 
4.3 Derivation of the Bose-Einstein Distribution Function 
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where x = ! µ " #( )  
This is just a geometric series with ratio r = ex . 

1+ r + r
2
+ ...=

1

1! r
 

So !
G
=

1

1" ex
. 

f !( ) =

Nse
Nsx

Ns =0

"

#

$G
=

%$G
%x
$G

=
% ln$G
%x

= &
% ln 1& ex( )

%x
=

e
x

1& ex
=

1

e
& x &1

=
1

e

!&µ

kBT &1

 

 
4.4 Calculation of the Grand Partition Function, Pressure etc. 
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ZG = !G
all sin gle particle states

"  

where Z
G

 is for the whole system. 
cf. Z = ! N  for distinguishable particles in a classical gas. 
! = "kBT lnZG = "kBT ln#G

all sin gle particle states

$  

i.e. each single particle state contributes additively to ! = " pV( ) ). 
 

(a) S = !
"#
"T

$
%&

'
()
V ,µ

 

(constant V means ! does not change.) 
S = !kB f "( ) ln f "( ) + 1! f "( )( ) ln 1! f "( )( )#$ %&

states

'  for Fermions 

S = !kB f "( ) ln f "( ) ! 1+ f "( )( ) ln 1+ f "( )( )#$ %&
states

'  for Bosons. 

(This is not examinable as it needs a lot of algebra…) 
 

(b) p = !
"#
"V

$
%&

'
()
T ,µ

 

For particles in a box, 
!"

!V
=
!"

!#

!#

!V
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!
2
k
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2M
, k2 ~

1

L
2

, V = L
3 . 

!"
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!L

!L

!V
= #2

"

L

1

3L
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!"

!#states

$ =
! %kBT ln 1+ e

& µ%#( )( )( )
!#states

$

=
2

3V
# f #( )

states

$
E

! "# $#

 

This is true for both FD and BE distribution. 

p =
2E

3V
. Therefore pV =

2

3
E . 

Classically, E =
3

2
NkT . So pV = NkBT . 


