PC 3151 — Bose and Thermal Gases

4. The Bose-Einstein (DE) and Fermi-Dirac (FD) Distribution
M 11.1-4, B&S 9.7, 9.9, 10.1-3, K&K 5-6.
Quantum effects become important if the typical distance d between atoms is d < A, .

Remember than A, depends on temperature, so that at low temperatures quantum
effects also become important. Approach the problem via distribution functions.

4.1 Average Number of Particles f(¢)
Define f(€) as the average number of particles in a single particle state of energy &
and temperature 7 .

For Bosons, f(&)= —e5 - This is the Bose-Einstein Distribution Function.
el —1
For Fermions, f(&)= —e5 - This is the Fermi-Dirac Distrubition Function.
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In both cases, u is the chemical potential.

What determines the chemical potential?
The system has a fixed number of particles N.
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The energies € of the states are known, and the temperature is known, so ¢ can be

calculated in terms of N — or usually % .
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For e—u>>k,T, f(e)=¢” (1) for FD and BE. They go towards the classical line
©).

The remainder of the course is devoted to the implications of f(&).

4.2 The Derivation of Fermi-Dirac Distribution Function

Consider spin % particles for simplicity. Consider a single-particle state of energy &€,
for either spin up or spin down. Take the reservoir to be all the other single particle
states, i.e. the gas as a whole.

Subtle point: states are distinguishable, particles are not.

N, E, UN, —E, p(NE,)
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NB: lower case { now refers to a single state, not a single particle.

(Grand canonical partition Z, = 2 P N“E"‘))
(V,.S)

We are considering one state and N, =0,1.

We are after the average number of particles in the state:

f(e)= X, N,p(N,.E,)
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Therefore f(g)=———+—.
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4.3 Derivation of the Bose-Einstein Distribution Function
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where x=f(u-¢)

This is just a geometric series with ratio r =e".
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4.4 Calculation of the Grand Partition Function, Pressure etc.
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Z; = H CG

allsin gle particle states

where Z; is for the whole system.

cf. Z={" for distinguishable particles in a classical gas.

¢=—k,TInZ,=-k,7 Y  Ing,
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i.e. each single particle state contributes additively to ¢(=
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(constant V means & does not change.)

-pV)).

S=—k, [ £(e)Inf(e)+(1- f(£))in(1- f(£))] for Fermions

states

S=—k, Y [ f(e)Inf(e)—(1+ f(g))In(1+ f(g))] for Bosons.
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(This is not examinable as it needs a lot of algebra...)
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For particles in a box,
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2
=3V ef(€)

This is true for both FD and BE distribution.

states

2FE 2
= — . Therefore pV =—E.
P=3y Pr=3

3
Classically, E = ENkT .So pV = Nk,T .



