4. The Bose-Einstein (DE) and Fermi-Dirac (FD) Distribution

M 11.1-4, B&S 9.7, 9.9, 10.1-3, K&K 5-6.

Quantum effects become important if the typical distance d between atoms is $d \le \lambda_T$. Remember than λ_T depends on temperature, so that at low temperatures quantum effects also become important. Approach the problem via distribution functions.

4.1 Average Number of Particles $f(\varepsilon)$

Define $f(\varepsilon)$ as the average number of particles in a single particle state of energy ε and temperature T.

For Bosons, $f(\varepsilon) = \frac{1}{e^{\frac{(\varepsilon-\mu)}{k_B T}} - 1}$. This is the Bose-Einstein Distribution Function.

For Fermions, $f(\varepsilon) = \frac{1}{e^{\frac{(\varepsilon-\mu)}{k_BT}} + 1}$. This is the Fermi-Dirac Distrubition Function.

In both cases, μ is the chemical potential.

What determines the chemical potential? The system has a fixed number of particles N.

$$N = \sum_{\text{all states}} f(\varepsilon) = \sum_{\text{all states}} \frac{1}{e^{\beta(\varepsilon - \mu)} \pm 1}$$

The energies ε of the states are known, and the temperature is known, so μ can be calculated in terms of N – or usually N_V .

For $\varepsilon - \mu \gg k_B T$, $f(\varepsilon) = e^{-\beta(\varepsilon - \mu)}$ for FD and BE. They go towards the classical line (C).

The remainder of the course is devoted to the implications of $f(\varepsilon)$.

4.2 The Derivation of Fermi-Dirac Distribution Function

Consider spin ½ particles for simplicity. Consider a single-particle state of energy ε , for either spin up or spin down. Take the reservoir to be all the other single particle states, i.e. the gas as a whole.

N_s	E_s	$\mu N_s - E_s$	$p(N_s, E_s)$
0	0	0	$\frac{1}{\zeta_G}$

Subtle point: states are distinguishable, particles are not.

1	ε	$\mu - \varepsilon$	$e^{eta(\mu-arepsilon)}$
			$\overline{\zeta_G}$
0()			

 $\zeta_G = 1 + e^{\beta(\mu - \varepsilon)}$

NB: lower case ζ now refers to a single state, not a single particle.

(Grand canonical partition $Z_G = \sum_{(N_s,S)} e^{\beta(\mu N_s - E_s)}$)

We are considering one state and $N_s = 0, 1$.

We are after the average number of particles in the state:

$$f(\varepsilon) = \sum_{N_s, E_s} N_s p(N_s, E_s)$$
$$= 0 \times \frac{1}{\zeta_G} + 1 \times \frac{e^{\beta(\mu - \varepsilon)}}{\zeta_G}$$
$$= \frac{e^{\beta(\mu - \varepsilon)}}{1 + e^{\beta(\mu - \varepsilon)}}$$

Therefore $f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)} + 1}$.

4.3 Derivation of the Bose-Einstein Distribution Function

N_s	E_s	$\mu N_s - E_s$	
0	0	0	
1	ε	$\mu - \varepsilon$	
2	2ε	$2(\mu - \varepsilon)$	
		•••	
N_s	$N_s \epsilon$	$N_s(\mu-\varepsilon)$	
		•••	

$$\zeta_G = 1 + e^{\beta(\mu - \varepsilon)} + e^{2\beta(\mu - \varepsilon)} + \ldots + e^{N_s\beta(\mu - \varepsilon)} + \ldots$$

$$=\sum_{N_s=0}^{\infty}e^{N_sx}$$

where $x = \beta(\mu - \varepsilon)$

This is just a geometric series with ratio $r = e^x$.

$$1+r+r^{2}+...=\frac{1}{1-r}$$

So $\zeta_{G} = \frac{1}{1-e^{x}}$.
$$f(\varepsilon) = \frac{\sum_{N_{s}=0}^{\infty} N_{s} e^{N_{s} x}}{\zeta_{G}} = \frac{\partial \zeta_{G}}{\partial x} = \frac{\partial \ln \zeta_{G}}{\partial x} = -\frac{\partial \ln (1-e^{x})}{\partial x} = \frac{e^{x}}{1-e^{x}} = \frac{1}{e^{-x}-1}$$
$$= \frac{1}{e^{\frac{\varepsilon-\mu}{k_{B}T}}-1}$$

4.4 Calculation of the Grand Partition Function, Pressure etc.

$$Z_G = \prod_{all \ sin \ gle \ particle \ states} \zeta_G$$

where Z_G is for the whole system. cf. $Z = \zeta^N$ for distinguishable particles in a classical gas. $\phi = -k_B T \ln Z_G = -k_B T \sum_{all \sin gle \ particle \ states} \ln \zeta_G$

i.e. each single particle state contributes additively to $\phi(=-pV)$).

(a)
$$S = -\left(\frac{\partial \phi}{\partial T}\right)_{V,\mu}$$

(constant V means ε does not change.)

$$S = -k_B \sum_{\text{states}} \left[f(\varepsilon) \ln f(\varepsilon) + (1 - f(\varepsilon)) \ln (1 - f(\varepsilon)) \right] \text{ for Fermions}$$
$$S = -k_B \sum_{\text{states}} \left[f(\varepsilon) \ln f(\varepsilon) - (1 + f(\varepsilon)) \ln (1 + f(\varepsilon)) \right] \text{ for Bosons.}$$

(This is not examinable as it needs a lot of algebra...)

(b)
$$p = -\left(\frac{\partial \phi}{\partial V}\right)_{T,y}$$

For particles in a box,

$$\frac{\partial \phi}{\partial V} = \frac{\partial \phi}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial V}$$

$$\varepsilon = \frac{\hbar^2 k^2}{2M}, \ k^2 \sim \frac{1}{L^2}, \ V = L^3.$$

$$\frac{\partial \varepsilon}{\partial V} = \frac{\partial \varepsilon}{\partial L} \frac{\partial L}{\partial V} = -2 \frac{\varepsilon}{L} \frac{1}{3L^2} = \frac{2}{3} \frac{\varepsilon}{V}$$

$$\sum_{\text{states}} \frac{\partial \phi}{\partial \varepsilon} = \sum_{\text{states}} \frac{\partial \left(-k_B T \ln\left(1 + e^{\beta(\mu - \varepsilon)}\right)\right)}{\partial \varepsilon}$$

$$= \frac{2}{3V} \sum_{\text{states}} \varepsilon f(\varepsilon)$$

This is true for both FD and BE distribution. $p = \frac{2E}{3V}$. Therefore $pV = \frac{2}{3}E$.

Classically, $E = \frac{3}{2}NkT$. So $pV = Nk_BT$.