4. The Bose-Einstein (DE) and Fermi-Dirac (FD) Distribution

M 11.1-4, B\&S 9.7, 9.9, 10.1-3, K\&K 5-6.
Quantum effects become important if the typical distance d between atoms is $d \leq \lambda_{T}$. Remember than λ_{T} depends on temperature, so that at low temperatures quantum effects also become important. Approach the problem via distribution functions.

4.1 Average Number of Particles $f(\varepsilon)$

Define $f(\varepsilon)$ as the average number of particles in a single particle state of energy ε and temperature T.
For Bosons, $f(\varepsilon)=\frac{1}{e^{\frac{(\varepsilon-\mu)}{k_{B} T}}-1}$. This is the Bose-Einstein Distribution Function.
For Fermions, $f(\varepsilon)=\frac{1}{e^{\frac{(\varepsilon-\mu)}{k_{B} T}}+1}$. This is the Fermi-Dirac Distrubition Function.
In both cases, μ is the chemical potential.
What determines the chemical potential?
The system has a fixed number of particles N .
$N=\sum_{\text {all states }} f(\varepsilon)=\sum_{\text {all states }} \frac{1}{\beta(\varepsilon-\mu)} \pm 1$
The energies ε of the states are known, and the temperature is known, so μ can be calculated in terms of N - or usually N / V.

For $\varepsilon-\mu \gg k_{B} T, f(\varepsilon)=e^{-\beta(\varepsilon-\mu)}$ for FD and BE. They go towards the classical line (C).

The remainder of the course is devoted to the implications of $f(\varepsilon)$.

4.2 The Derivation of Fermi-Dirac Distribution Function

Consider spin $1 / 2$ particles for simplicity. Consider a single-particle state of energy ε, for either spin up or spin down. Take the reservoir to be all the other single particle states, i.e. the gas as a whole.
Subtle point: states are distinguishable, particles are not.

N_{s}	E_{s}	$\mu N_{s}-E_{s}$	$p\left(N_{s}, E_{s}\right)$
0	0	0	$1 / \zeta_{G}$

1	ε	$\mu-\varepsilon$	$e^{\beta(\mu-\varepsilon)}$
			ζ_{G}

$\zeta_{G}=1+e^{\beta(\mu-\varepsilon)}$
NB: lower case ζ now refers to a single state, not a single particle.
(Grand canonical partition $Z_{G}=\sum_{\left(N_{s}, S\right)} e^{\beta\left(\mu N_{s}-E_{s}\right)}$)
We are considering one state and $N_{s}=0,1$.
We are after the average number of particles in the state:

$$
\begin{aligned}
f(\varepsilon) & =\sum_{N_{s}, E_{s}} N_{s} p\left(N_{s}, E_{s}\right) \\
& =0 \times \frac{1}{\zeta_{G}}+1 \times \frac{e^{\beta(\mu-\varepsilon)}}{\zeta_{G}} \\
& =\frac{e^{\beta(\mu-\varepsilon)}}{1+e^{\beta(\mu-\varepsilon)}}
\end{aligned}
$$

Therefore $f(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1}$.

4.3 Derivation of the Bose-Einstein Distribution Function

| N_{s} | E_{s} | $\mu N_{s}-E_{s}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | | |
| 1 | ε | $\mu-\varepsilon$ | | |
| 2 | 2ε | $2(\mu-\varepsilon)$ | | |
| \ldots | \ldots | \ldots | | |
| N_{s} | $N_{s} \varepsilon$ | $N_{s}(\mu-\varepsilon)$ | | |
| \ldots | \ldots | \ldots | | |

$\zeta_{G}=1+e^{\beta(\mu-\varepsilon)}+e^{2 \beta(\mu-\varepsilon)}+\ldots+e^{N_{s} \beta(\mu-\varepsilon)}+\ldots$
$=\sum_{N_{s}=0}^{\infty} e^{N_{s} x}$
where $x=\beta(\mu-\varepsilon)$
This is just a geometric series with ratio $r=e^{x}$.
$1+r+r^{2}+\ldots=\frac{1}{1-r}$
So $\zeta_{G}=\frac{1}{1-e^{x}}$.

$$
\begin{aligned}
f(\varepsilon) & =\frac{\sum_{N_{s}=0}^{\infty} N_{s} e^{N_{s} x}}{\zeta_{G}}=\frac{\frac{\partial \zeta_{G}}{\partial x}}{\zeta_{G}}=\frac{\partial \ln \zeta_{G}}{\partial x}=-\frac{\partial \ln \left(1-e^{x}\right)}{\partial x}=\frac{e^{x}}{1-e^{x}}=\frac{1}{e^{-x}-1} \\
& =\frac{1}{e^{\frac{\varepsilon-\mu}{k_{B} T}}-1}
\end{aligned}
$$

4.4 Calculation of the Grand Partition Function, Pressure etc.

where Z_{G} is for the whole system.
cf. $Z=\zeta^{N}$ for distinguishable particles in a classical gas.

$$
\phi=-k_{B} T \ln Z_{G}=-k_{B} T \sum_{\text {all sin gleparticlestates }} \ln \zeta_{G}
$$

i.e. each single particle state contributes additively to $\phi(=-p V)$).
(a) $S=-\left(\frac{\partial \phi}{\partial T}\right)_{V, \mu}$
(constant V means ε does not change.)
$S=-k_{B} \sum_{\text {states }}[f(\varepsilon) \ln f(\varepsilon)+(1-f(\varepsilon)) \ln (1-f(\varepsilon))]$ for Fermions
$S=-k_{B} \sum_{\text {states }}[f(\varepsilon) \ln f(\varepsilon)-(1+f(\varepsilon)) \ln (1+f(\varepsilon))]$ for Bosons.
(This is not examinable as it needs a lot of algebra...)
(b) $p=-\left(\frac{\partial \phi}{\partial V}\right)_{T, \mu}$

For particles in a box,
$\frac{\partial \phi}{\partial V}=\frac{\partial \phi}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial V}$
$\varepsilon=\frac{\hbar^{2} k^{2}}{2 M}, k^{2} \sim \frac{1}{L^{2}}, V=L^{3}$.
$\frac{\partial \varepsilon}{\partial V}=\frac{\partial \varepsilon}{\partial L} \frac{\partial L}{\partial V}=-2 \frac{\varepsilon}{L} \frac{1}{3 L^{2}}=\frac{2}{3} \frac{\varepsilon}{V}$
$\sum_{\text {states }} \frac{\partial \phi}{\partial \varepsilon}=\sum_{\text {states }} \frac{\partial\left(-k_{B} T \ln \left(1+e^{\beta(\mu-\varepsilon)}\right)\right)}{\partial \varepsilon}$

$$
=\frac{2}{3 V} \underbrace{\sum_{\text {states }} \varepsilon f(\varepsilon)}_{E}
$$

This is true for both FD and BE distribution.
$p=\frac{2 E}{3 V}$. Therefore $p V=\frac{2}{3} E$.
Classically, $E=\frac{3}{2} N k T$. So $p V=N k_{B} T$.

