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3. The Thermal Physics of the Ideal Classical Gas 
(Mandl 7.1-7.6, B&S 5.9, 6.5, 7.4, K&K p72-77) 
To show amongst other things that  
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B
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in the classical limit. 
 
3.1 What is the classical limit? 

Typical energy of particles in a classical gas 
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It is conventional to insert ! . 
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Classical behaviour is seen if the particle spacing 
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 i.e. quantum 

effects are unimportant if the particle spacing is much greater than the de Broglie 
wavelength of a typical particle. 

Define 
  

n
Q
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 to be the quantum concentration. 

The classical limit is when 
 
n << n

Q
, i.e. at low densities. 

 
So the classical limit is a low density, high temperature approximation. 
 
NB: 

 
!

T
"#  as   T ! 0 , so classical behaviour always fails at low temperature. 

 
3.2 Single Particle Partition Function !  
Particle function  Z   free energy 

  
F = !k

B
T ln Z   pressure, entropy, etc. 

 
For one-particle in a box: 
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We can use the approximation 
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where: 

  
2s +1( )  is if the particles have spin.   s = 0  for simplicity. 
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Integral is straightforward – very important. 
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Set  y = ! x , so  dy = !dx . 
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 (a well-known integral) 
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In our integral, 
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So 
 J = ! . 

 
3.3 – N Particle Partition Function Z. 
(M 7.1, B&S 6.5) 



PC 3151 – Thermal Physics of Bose and Fermi Gases 

3 

Z = e
!E

kBT"  
where the sum is over all the allowed microstates of the N particle system. 
For distinguishable particles, Z = 3

N . 
For indistinguishable particles, Z ! 3

N . 
 
Consider two spinless bosons each of which can be in two energy levels 0  and ! . 

 
For one particle, 

! = e
"E

KBT# = e
"0
+ e

" $
kBT = 1+ e
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kBT  

 
Distinguishable: 
Particles labeled a and b. 
2 particle system has 4 microstates. 
a,b( )  = 0,0( ) , 0,!( ) , !,0( )  and !,!( ) . 

These have energies of 0, ! , !  and 2!  respectively. 
The partition function is: 
Z = e

!0
+ 2e

!"#
+ e

!2"#
= 1+ e

!"#( )
2

= $ 2  
 
Indistinguishable: 
2 particle system has three microstates 0,0( ) , 0,!( )  and !,!( ) . The case of !,0( )  is 
dismissed as it is indistinguishable from 0,!( ) . 
Energies are 0, !  and 2! . 
The partition function is: 
Z = e

!0
+ e

!"#
+ e

!2"#
= 1+ e

!"#
+ e

!2"# $ % 2 . 
To prove: 
For indistinguishable particles in the classical limit d >> !

T
 (or n << nQ = 1

!
T

3 ). 

Z !
" N

N !
 where !  the partition function is =Vn

Q
=
V

!
T

3
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A typical particle in a classical gas has ! ~ k
B
T . The probability of a state being 

occupied is equal to 
e
!"#

$
~
e
!1

$
~
1

$
 for ! ~ k

B
T . 

For N particles in a box, the number of particles in a state ~ N
!

=
N

Vn
Q

=
n

n
Q

. But in 

the classical regime, n << n
Q

, so n
n
Q

<<1 . Hence in the classical limit, there is a very 

low probability (negligible) of having more than one particle in any k state. 
Accessible k states are more common than occupied states. 
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Each microstate for indistinguishable particles corresponds to N ! microstates for 
distinguishable particles. N ! is the number of arrangements of distinguishable 

particles. Therefore the sum of the allowed microstates e
!E

kBT"  is reduced by a 
factor of N ! from that of distinguishable particles. 
Therefore: 

Z =
Vn

Q( )
N

N !
 in the classical limit. 

 
3.4 Properties of the Classical Gas 

a) Helmholtz Free Energy F 
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T lnZ  

b) Internal energy 
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as expected from the equipartition function. 
c) Pressure 
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therefore pV = NkBT  the ideal gas law (in classical limits). 
For one mole, N = N

A
, pV = RT . R = N

A
k
B

. 
d) Entropy 
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Use Sterling’s Formula lnN != N lnN ! N + ...  
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the Sackur-Tetrode equation. 
NB: it gales at low T. Predicts S!"#  as T ! 0 . This is due to the failure of 
the classical approximation as T ! 0 . 
If we had included spin, there would have been an additional term in the 
entropy Nk

B
ln 2s +1( )  where 2s +1  is the spin degeneracy. 

Disorder associated with the spins: 2N  arrangements of the N spins for S = 1
2

. 

This is the only quantity affected by the spin degeneracy. 
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e) Chemical Potential 
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This is negative in the classical regime where d >> !
T

. 
 
3.5 How good is the classical approximation at STP? 
(STP = Standard Temperature and Pressure) 

p =
N

V
kBT , so 

N

V
! 3"10

25
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#3  at STP. 

The typical distance between particles is d ~
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So d > !
T

, so the approximation is good. However it is still the same order of 
magnitude, so there are quantum effects present – very sensitive experiments can 
detect them. These effects become much larger at lower temperatures. 
 


