PC 3151 — Thermal Physics of Bose and Fermi Gases

3. The Thermal Physics of the Ideal Classical Gas
(Mandl 7.1-7.6, B&S 5.9, 6.5, 7.4, K&K p72-77)
To show amongst other things that

pV =nk,T
in the classical limit.

3.1 What is the classical limit?

2
Typical energy of particles in a classical gas ~ kT = <2P;>
m
1
p~(2 1\4ka)/2
de Broglie wavelength of a typical particle:

I

YA
P (2Mk,TY?
It is conventional to insert 7.

Define A, = thermal wavelength= 7
(27 Mk, T)

5
Classical behaviour is seen if the particle spacing d ~(—] >> A, i.e. quantum
N

effects are unimportant if the particle spacing is much greater than the de Broglie
wavelength of a typical particle.

1 .
Define n o=73 to be the quantum concentration.

T
The classical limit is when 7 << n,, 1.e. at low densities.
So the classical limit is a low density, high temperature approximation.

NB: A, = as T — 0, so classical behaviour always fails at low temperature.

3.2 Single Particle Partition Function {
Particle function Z -> free energy F'=—k,T'InZ -> pressure, entropy, etc.

For one-particle in a box:

()

= Z ekaT

all k states

We can use the approximation
g(k) k2
kB

kT = Vk® 2 Mk,T
Ze %(2S+1)J.0 —2 ~ dke
T

where:
(2s + 1) is if the particles have spin. s =0 for simplicity.
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Vk2
k= p(k)dk
s
e " is the Boltzmann distribution.

V
g = VnQ =—
2'T
Integral is straightforward — very important.
_ “ _ax? 2
1= JO e ™ x“dx

where o is the constants, and x=k%.

d © —ax?
]=—%(J‘O e dxj
Set yzx/;x, SO dy:\/adx.
__i L C
=l e

- Jr
e’ dy=

.[0 Y OC%

_d || 1dr
do 2\/5 _4a%

2
In our integral, o =

(a well-known integral)

1=

and x=4%. So:

B

v ﬁ[ZMkBT}% _V(MkBTJ% v

1> | 2nn?

q_

S on? 4
Jme_)’z dy = ljm dy e

0 2 —oo

J= j:dye_yz

J? = J:dye_yz J._:dxe_"2
(x isthe sameas y...)

J? = J:J:dxdye_(

= 275_": drre” = 27{—15"2 }
0

2 +y?

) X joz”r drdfe”

=7
So J:\/;.

3.3 — N Particle Partition Function Z.
(M 7.1, B&S 6.5)
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Z = Ze_% al

where the sum is over all the allowed microstates of the N particle system.
For distinguishable particles, Z = 3" .

For indistinguishable particles, Z # 3" .

Consider two spinless bosons each of which can be in two energy levels 0 and ¢ .

3

For one particle,

(= Ze_%BT =e’ + e_%BT =1+ e_%BT

Distinguishable:
Particles labeled a and b.
2 particle system has 4 microstates.

(a,b) = (0,0), (0,€), (£0) and (&,¢).
These have energies of 0, €, € and 2¢ respectively.
The partition function is:

Z=e+2eP 4¢P = (1+ e‘ﬁg)2 - é’z

Indistinguishable:
2 particle system has three microstates (0,0), (0,€) and (&,€). The case of (&,0) is
dismissed as it is indistinguishable from (0,¢).

Energies are 0, € and 2¢.
The partition function is:

Z=e'+e P teF=1+e 1o,
To prove:
For indistinguishable particles in the classical limit d >> A, (or n<<n, = %73 ).

N
. . %
Z= " where ¢ the partition function is = Vn, = ?
A typical particle in a classical gas has €~ k,T . The probability of a state being
-Be -1
e 1
occupied is equal to ~—n~— for e~k,T.
¢ ¢ ¢ ’
. . . . N N n .
For N particles in a box, the number of particles in a state ~—= s =—_. Butin
g Ty

the classical regime, n<<n,, so — <<1. Hence in the classical limit, there is a very
n
0

low probability (negligible) of having more than one particle in any k state.
Accessible k states are more common than occupied states.
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Each microstate for indistinguishable particles corresponds to N! microstates for
distinguishable particles. N! is the number of arrangements of distinguishable

_E
particles. Therefore the sum of the allowed microstates Ze Phat is reduced by a

factor of N! from that of distinguishable particles.
Therefore:

(V)" | .
Z= o in the classical limit.

3.4 Properties of the Classical Gas

a) Helmholtz Free Energy F
F=—k,TInZ

b) Internal energy

F
=+ |2 —(-InZ)
B\ k, T 8[3

InZ=NInV+Nlnn,—InN!

e ﬂe/ :B_
Inn, :——lnﬁ
E= 3Nalnﬂ SN nir

2 dJB 2B 2
as expected from the equipartition function.
c) Pressure

P:—(a—F) N A e
vV s v v

therefore pV = Nk,T the ideal gas law (in classical limits).
For one mole, N=N,, pV=RT . R=N k,.
d) Entropy

oF
S=—| —
5.,

Use Sterling’s Formula InN!=NInN—-N+...

S = Nk, ln(zj+gln(T)+Eln( Msz )+§
N) 2 2 \2rh 2

the Sackur-Tetrode equation.

NB: it gales at low T. Predicts § — —co as T — 0. This is due to the failure of
the classical approximation as 7 — 0.

If we had included spin, there would have been an additional term in the
entropy Nk, In(2s+1) where 2s+1 is the spin degeneracy.

. . . . . 1
Disorder associated with the spins: 2" arrangements of the N spins for § = 5

This is the only quantity affected by the spin degeneracy.
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e) Chemical Potential

-(5v)
H=lon vy

X

2Mk.T V> 2

.UZ—EkBTln E( d sz ) :_ngTlnd_2
2 A 2 A,

This is negative in the classical regime where d >> 4, .

3.5 How good is the classical approximation at STP?
(STP = Standard Temperature and Pressure)

N N
p ZVkBT’ so 7 = 3x10%”m™ at STP.

1
o _ A%
The typical distance between particles is d ~ (ﬁ) =3.2nm

h
Ay = —————~0.05nm

(2 Mk, T
So d>A,, so the approximation is good. However it is still the same order of

magnitude, so there are quantum effects present — very sensitive experiments can
detect them. These effects become much larger at lower temperatures.



