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2. Quantum Mechanics of Particles in a Box 
M. App: B1 and B2; B&S Chapter 7.1 – 7.3, K&K p72 
 
Imagine a cubic box of side L. 
 
2.1 Single Particle Energy Eigenvalues 
TISE. 
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  V = 0  inside the box.  V = !  outside the box. 
 
!" = 0  on the walls. 
For a 1D well of width L; 
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!  has an integral number of half-wavelengths in the box. 
 
For 3D “cubic” well; 
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   !,m,n  are positive integers. 
NB: integer values are forced by the boundary condition 

  
! x = 0, y, z( ) = x = L, y, z( ) = 0 . 
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! = 0!" = 0  so zero is not allowed. 
Negative integers  ! " #!$% &'   this is not a distinct state. 
 
2.2 The concept of Reciprocal Space (also called momentum space or k-space) 
Very important concept. Used in particle, nuclear, atomic and solid state physics. It 
allows the plotting of the eigenstates. 
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The 
 
k -vector has components 
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(supposed to be a 3D box with a vector pointing to the point…) 

The point represents the state 
   !,m,n  with energy 

   

!
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 and distance squared from the 

origin in k-space. 
The states of the particle in the box are referred to as k-states. 
 
Why reciprocal space? Because k has dimensions of 

  

1

length
. 

Why k-space?  k  is universally used for wave numbers. 
Why momentum space? Because   !k  has dimensions of momentum. 

  !! ! +1  would be equivalent to a displacement 
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  m! m +1  would be equivalent to a displacement 
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  n ! n +1  would be equilavent to a displacement 
 

!

L
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k

z
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The totality of states corresponds to all positive values of 
   !,n,m . 

The points representing these states map out a simple cubic lattice in k space of side 

 

!

L
. 

 

 
 
2.3 The density of states 
(This will definitely be on the exam.) 
Say we have a   1cm

3  box of Helium atoms at   T = 300k . 

The energy 
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We are usually interested in states far from the origin i.e. large 

   !,m,n  (except for the 
important case of Bose-Einstein condensation). 
 

One state occupies a volume 
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 of k-space. Therefore the density of states 
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How many states in a spherical shell of k-space? 

Shell between  k  and  k + dk . Assume 
  

dk >>
!

2
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3D case: 
The number of states in the shell is: 
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where 
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 is the positive octant 
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> 0  only, the second part is the spherical 

shell volume, and the last part is the density of state. 
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. This is also called the density of states. It is the rate at which the 

number of states increases per unit increase in the magnitude of k. 

 
! k( )dx  is the number of states between  k and  k + dk . 

Let 
 
g !( )d!  equal the number of stases whose energies lie between !  and  ! + d! . 

 
g !( )d! = " k( )dk . 
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 for non-relativistic particles. 

For photons: 
  ! = pc = !ck  
Now: 
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For photons   ! = !ck : 
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a = non-relativistic particles 
b = photons 
Allow for spin degeneracy: 
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2s +1( )  is the spin degeneracy. Each state might be occupied (say for electrons) by !  

or !  electron. 
 
2.4 Two dimensional density of state 
Density of states: 
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 (m, n are positive integers) 
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two dimensions. 
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