
PC 3151 – Thermal Physics of Bose and Fermi Gases 
 

1. Quantum Mechanics of Ideal Gases 
Further reading: M 9.1 - 9.2, B&S 6.1 - 6.4, K&K p152 - 153. 
 
Consider the collision of two identical particles. Two particles (1 and 2) enter the 
interaction region, and two particles leave. The uncertainty principle prevents is from 
putting labels 1 and 2 on the outgoing particles. We cannot know the position and 
momentum of the particles accurately enough within the interaction region to 
distinguish the two possibilities. 
 
This has a profound implication for the wave function of the two particles. We shall 
reach the conclusion that the particles of nature come in two types – bosons and 
fermions. 
 
In quantum mechanics we have studied the wave function of a single particle 
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where   Ĥ  is the Hamilton operator 

   

Ĥ = !
!

2

2m

"
2

"x
1

2
!
!

2

2m

"
2

"x
2

2
+V x

1( ) +V x
2( ) +V x

1
,x

2( )  

where the first and second parts are the 
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 for the Coulomb force. 

 
Indistinguishability restricts the form of 
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1.1 Symmetry of 
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If this were not the case, then the particles could be identified. E.g. one could identify 
a particular region of space and say that particle 1 is the particle that has a 10% 
probability of being in the region, particle 2 has a 15% probability. 
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The above conclusion 
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 states that these probabilities are 

equal for any region of space. 
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!  is symmetric under interchange of particles. Particles with this behavior are 
Bosons or Bose-Einstein Particles. 
 
For ! = " : 
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!  is anti-symmetric under interchange of particles. 
Particles with this behavior are called Fermions or Fermi-Dirac particles. 
 
1.2 – Bosons and Fermions and Spin 
Particles such as electrons, photons and neutrons have intrinsic angular momentum or 
spin. Whether a particle is a boson or fermion is determined by the magnitude of its’ 
spin angular momentum. 
 

  
Ŝ  is the operator for the spin angular momentum of the particle. 
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Spin degeneracy   = 2S +1 . For an electron, spin degeneracy =   2s +1= 2 . 
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Pauli confirmed this through relativistic formulation of quantum field theory, which 
provides a rigorous proof of the connection between the spin and the statistics. 
 
Fermions Bosons 
Electron, Quark and Neutrino all have 
spin 
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Photon   S = 1  
Graviton   S = 2  

The above are all “really fundamental” particles. 
Composite particles consist of even numbers of fermions have integral spin and 
behave as bosons. 
Composite particles consist of odd numbers of fermions have half-integral spin and 
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behave as fermions. 

Neutron, proton - 
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Therefore symmetric under exchange of the atoms. 
 
1.3 Fermions obey the Pauli Exclusion Principle 
No two fermions in the same single particle states. Single particle states, 
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If more than one particle in a system and particles do not interact too strongly – then 
states still useful. 
For two non-interacting particles, 
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Now we cannot say which particle is in which state. 
If both particles are in the same state,  a = b , then; 
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2( ) = 0  for fermions. i.e. this is not possible  Pauli principles. 
Many bosons can live in the same state – they prefer it as it lowers their energies. 


