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Conservation Laws 
For every conservation of some quantity, this is equivalent to an invariance under 
some transformation. 
Invariance under space displacement leads to (and from) conservation of linear 
momentum. 
Invariance under time displacement leads to conservation of energy. 
Invariance under spatial rotation displacement leads to conservation of angular 
momentum. 
Lorentz transformation  invariant mass. 
 
1. “Old” conservation law” 
Angular Momentum 
For particles, the total angular momentum  equals the orbital and spin angular 
momentum. J = L + S . 

Spin of a proton or a neutron is 1
2

 (nuclear shell model). 

Spin of the electron is also 1
2

 which comes from the atomic shell model. 
Spin of a photon is 1 – this comes from dipole transitions. 
The spin of a particle is equal to the spin of the equivalent anti-particle. 
 
(1) Beta Decay: 
n! p + e

"
+ #

e
 

Here, all particle have spin ½ - this lead to the first deduction of the neutrino (1/2 != 
1). Therefore all fermions. 
(2) There is a very rare decay of a Pion (0.01% probability). ! +

" e
+
+ #

e
. 

!
"
# e

"
+ $

e
. So the spin of ! ±  must be integer.  Boson. 

! 0
" 2# . So the spin of ! 0  is also integer  boson. 

(3) µ  is very similar to the electron.  imply that the spin of the µ  is also ½  also 
a femion. This is confirmed by a measurement of its’ gyromagnetic ratio (its’ 
magnetic dipole moment divided by its’ spin). 
(4) Common !  decay (99.99%): ! +

" µ+
+ #µ , ! "

# µ"
+ $µ . 

So spin of the !µ  and !µ  have the same spin as electron neutrinos, and is ½ integer 
(fermions). 
 
2. “New” conservation laws 
Start off with Leptons. 
Fact a) n! p + e

"
+ #

e
. Can take a beam of neutrons, produce large amounts of 

neutrinos, and see what happens. !
e
+ p" n + e

+ . But !
e
+ p" n + µ+  should surely 

happen? This has never been observed. 
 
Fact b) ! "

# µ"
+ $µ . You can take a beam of pions, hence get neutinos. Send these 

into a target  !µ + p" µ+
+ ... . You may expect !µ + p" e

+ , but this will never 
happen. 
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This leads to the deduction that !  produced with e give electrons, never µ ’s. 
Conversely ! produced with µ  give µ , never electrons. 
So there are two different kinds of neutrinos, !

e
 and !µ , as well as their antiparticles. 

We now also have a Tau, which has !
"

. 
So we have three kinds of neutrinos, plus their antiparticles. 
 
Fact c) You would expect the µ+

! e
+
+ "µ + "e

. This is seen. You could have 

expected µ+
! e

+
+ " . This never happens. 

The deduction from this is that e-type, µ -type and ! -type particles must be 
separately conserved. 
Implementation: 
e-type particles are given an electron lepton number L

e
= ±1 . 

µ -type particles are given an muon lepton number Lµ = ±1 . 
! -type particles are given an Tau lepton number L

!
= ±1 . 

All non-leptons (all hadrons and all force bosons) have L
e
= Lµ = L!

= 0 . 
 L

e
 L

m
 L

!
 

e
!  +1 0 0 
e
+  -1 0 0 

!
e
 +1 0 0 

!
e
 -1 0 0 

µ!  0 +1 0 

!
"  0 0 +1 

Each lepton number L
e
, Lµ , L

!
 is separately conserved. Watch out for neutrino 

oscillations. 
 
Baryons 
Baryons (qqq) have B = +1 . 
Anti-Baryons qqq( )  have B = !1  
Mesons qq  have B = 0 . 
Leptons and force bosons have no quarks, so B = 0  
q has B = 1

3
, q  has B = ! 1

3
. 

B is totally conserved in all interactions. Watch out for GUTs. This is a theory that 
tries to combine strong with other interactions. If true, then the proton will decay. If 
so, then baryon number is violated. However this has not been proved. 
p + p! p + p + p + p . 

 
Mesons 
e.g. ! .  
! 0

" 2#  (98.8%) 
Therefore mesons are not conserved. Therefore no special quantum numbers, and no 
special conservation laws. 
 
Particle Mass Decay Notes 
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!  ! < 6 "10
#17
eV  Stable no lighter particle to decay 

to. 
 

!  !
e
< 3eV  

!µ < 190KeV  
!
"
< 18.2MeV  

(in essence, no 
mass) 

Stable no lighter particle to decay 
to and conserve the lepton 
number. 

e
±  0.5MeV  Stable No lighter particle to decay 

to and conserve lepton 
number and charge. 
 

µ  100MeV  µ!
" e

!
+ #

e
+ #µ , 

µ+
! e

+
+ "

e
+ "µ  

Can decay to the lighter 
e
± , but to conserve lepton 

numbers we need 
neutrinos. Hence only 
weak interaction, which s 
slow. 
 

!
±  140MeV  !

+
" µ+

+ #µ  3!10"8
s  

!
"
# µ"

+ $µ  3!10"8
s  

Need the neutrinos to 
conserve the lepton 
number, theferore weak. 

!
0  140MeV  ! 0

" 2#  No Q to conserve. No B, 
L
e
 or Lµ  to conserve. 

Can’t go by the strong 
force. Therefore no lighter 
hadron. Therefore must be 
EM. 

p  1000MeV  Stable No lighter particle to 
conserve B 

N 1000MeV  n! p + e
"
+ #

e
 900s Need !  to conserve L

e
, 

therefore weak. 
Very slow because very 
small Q value. 

 
Force Speed Time 
Strong Fast 10

!23
s  

EM Medium 10
!16
s  

Weak Slow 10
!6
" 10

!10
s  

 
Strangeness 
This is the first of several partially conserved quantum numbers. 
1947 Rochester & Butler (Manchester) 
Clound chamdre in cosmic rays. After the lead plate in the middle, there is a small 
gap indicating a neutral particle, then there are two charged particles coming from this 
– one positive, one negative. 
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These were called “V” events of the types K 0
!"

+
+ "

#  and !0
" p + #

$ . !0  has 
a mass of 1.1GeV, and was the first observation of any particle with a mass greater 
than the mass of the proton or neutron. 
After this time, accelerators were invented allowing us to control the times, places and 
energies of particle collisions. 
 
Neutral particle produced by interaction in the lead. Production rate meant that it must 
be by the strong interaction – any other, and the decay would not happen fast enough 
and the particles wouldn’t be seen.  
Hence it would be expected that the particle would decay through the strong force, so 
it should decay in 10!23  seconds. This time comes from the distance the particle 
travels (for the strong interaction, this is around 10!15

m )., and the maximum speed it 
can travel at (speed of light). However, in this case the distance between the lead and 
the interaction is at least a few mm. So even if the particle decayed right at the edge of 
the lead, it could not possibly be due to the strong force. The decay must be slow – it 
must be by the weak interaction. 
 
Lifetimes expected for K 0  and !0  are ~ 10!23

s  by the strong force, but are actually 
10

!8
" 10

!10  or 10!10  respectively. (two lifetimes for K 0  as there are two types – 
short and long. This is not important.) 
 
Principle of Associated Production 1953 Gell-Mam 
These “strange” particles have a quantum number called “strangeness”. Always 
produced in pairs with S = +1 and S = !1 - no net strangeness. Strong production 
process. 
Decay separately with each decay having !S = 1 only via the weak interaction, which 
is the only reaction where strangeness is not conserved. 
 
With the Quark model (1964) (u, d, s) 
By convention: 
K
0  has S = +1and is a Meson d s( )  

!
0  has S = !1 and is a Baryon ud s( ) . 

So: 
s quark has S = !1, Q = ! 1

3
, B = 1

3
. 

s  quark has S = +1, Q = + 1
3

, B = ! 1
3

. 
S is an additive quantum number. 
All other quarks have S = 0 . 
All leptons have no quarks, so S = 0 . 
 
!

"
+ p# K

0
+ $

0  
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At mid-point. 
s s  produced.  
No net s produced. 
(!s = 0 : strong. 
 
At later reactions: !S = 1. W involved. Therefore Weak decay. 
 
Strangeness conserved in strong and EM reactions, but not in weak interactions. 
 
Isospin 
This is a partly-conserved quantum number. It can also be called isotropic or isobaric 
spin. The symbol is I , although some older ones call it T . It has similar properties 
with angular momentum spin quantum number, hence the “spin”. 
 
It is due to the charge indedendance of the strong interaction. It is due to the energy 
levels in mirror nuclei, such as 

3

7
Li  and 

4

7
Be , which are identical in energy levels 

(one has 3 protons 4 neutrons, the other 4 protons 3 neutrons). ! +
+ p  and ! "

+ n  
cross-sections are identical (apart from resonance). 
 neutrons and protons are the “same” particle as far as the strong interaction is 
concerned. We will call them two states of the nucleon. 
 
We can have both proton and neutron in the same energy state with parallel spins. As 
these are Fermions, and they obey the Fermi exclusion principle, because you can 
have them in the same state you need a distinguishing quantum number. Obviously, 
they do have a differing feature – the charge – but instead of using this we invent a 
new quantum number, called Isospin. 
Here 
I
3
= + 1

2
 for the Proton 

I
3
= ! 1

2
 for the neutron. 

I
3
 is the third component of Isospin I . This is the third projection of the Isospin – an 

equivalent in angular momentum would be L
z
, the projection onto the z-axis. But 

here we have Isospin space, not standard space, hence the numbered axis. 
 
Now go down to the Quark level. We know that the proton is uud , and the neutron 
udd . So we can deduce: 
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u  quark: I
3
= + 1

3
 

d  quark: I
3
= ! 1

2
. 

Their overall Isospin I = 1
2

 
I
3
= 0  for all other quarks. 

Note that I
3
 is algebraically addible, and I is vectorially additive. 

Isospin is the appropriate quantum number for up and down quarks. It corresponds to 
strangeness for the strange quark. 
 
By analogy with ordinary angular momentum spin S, the number of states with 
angular momentum S = 2s +1 . 
 Isospin number of substates in Isospin multiplet (i.e. the number of particles with 
the same I but different I

3
) = 2I +1. 

e.g. proton, neutron: 
I
s
= + 1

2
, ! 1

2
 

I = 1
2

 
2I +1 = 2  i.e. proton and neutron. 
 
For the strong interaction only, all 2I +1  states are degenerate i.e. they have the same 
energy, i.e. they have the same mass. 
 
For EM interactions, we obviously don’t have charge independence. This breaks state 
degeneracy  mass splitting, therefore mn

> m
p . All quantum numbers which are 

independent of the EM interaction are unaffected by this loss of degeneracy. 
Therefore all particles within an I multiplet have the same value of these quantum 
numbers, i.e. the Baryon number. 
 
Because I

3
 is algebraically additive, all antiparticles and antiquarks have the opposite 

I
3
 as their opposing particle. They have the same I as the particle. 

 
e.g. the Pion: 
!

+  is ud   I
3
= + 1

2
+ 1
2
= 1  

!
0  is uu / dd   I

3
= + 1

2
! 1
2
or! 1

2
+ 1
2
= 0  

!
"  is du .  I

3
= ! 1

2
! 1
2
= 1 . 

In total, I = 1 . Therefore 2I +1( ) = 3  states within I multiplet. If EM wasn’t 
involved, all particles would have the same mass, and all quantum numbers would be 
the same between them. Because of EM, there is mass differences. Same as for the 
nucleon. 
 
Because u has I

3
= + 1

2
, and Q = +2

3
, and for d  I = ! 1

2
 and Q = ! 1

3
, I

3
 is the 

most positive for states with most positive charge in any I multiplet. 
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There is obviously some correlation between charge and Isospin – this is a 
redundancy in the particle system. Proliferation of quantum numbers leads to 
redundancy and the following constraint – the Gell-Mann – Nisijima Relation. 
For Quarks, the charge on the quark is: 

Qq =
B + S

2
+ I

3
 where all quantum numbers refer to quarks 

All of these quantum numbers are algebraically additive, therefore for Hadrons we 
get: 

Q
H
=
B + S

2
+ I

3
 where all quantum numbers refer to the Hadron. 

Note for future: extend the quark model  u, d, s, c (charm), b (bottom or beauty), t 
(top or truth). 
Q = +2

3
 for u I

3
= + 1

2( ) , c C = +1( ) , t T = +1( ) . 

Q = ! 1
3

 for d I
3
= ! 1

2( ) , s S = !1( ) , b 
 

!B = !1( ) . 

All other quarks and leptons have 
 
I
3
,S,C, !B,T = 0 . 

 
C, !B,T  behave like S – conserved in strong interaction and EM interaction, but not in 
weak. 
 
So now: 

 

Qq =
B + S + C + !B + T

2
+ I

3
 for quarks 

 

Q
H
=
B + S + C + !B + T

2
+ I

3
 for Hadrons. 

The numerator B + S( ) , or 
 
B + S + C + !B + T( )  for extended, are called the 

Hypercharge, and given the symbol Y . 
 
Isospin Conservation 
SI charge independent. I  and I

3
 conserved. 

e.g.: 
!

"
+ p#!

0
+ n  

I :1+ 1
2
! 1+ 1

2
 

I
3
:!1+ 1

2
" 0 ! 1

2
 

In EM interaction, obviously not charge independent. I  is not conserved. 
e.g.: 
d + d!

4
He + "

0  
I : 0 + 0! 0 +1  
I
3
: 0 + 0! 0 + 0  

  I  is not conserved  cannot be strong interaction. Proceeds by IM interaction so 
relatively low !  (cross-section). 
 

 

Q =
B + S + C + !B + T

2
+ I

3
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Know that 
 
Q,S,C, !B,T  are all conserved in EM interaction. Therefore I

3
 mst also be 

conserved in EMI. 
So I  is not conserved, while I

3
 is. 

 
S I ,C, B̂,T( )  not conserved in weak interaction. 
 I

3
 not conserved in weak interaction. 

 
 Strong Interaction EM Weak 
I Yes No No 
I
3
 Yes Yes No 

 
Now go back and start to generate a model of this all… 


