3) The Postulates of Quantum Mechanics

The State Space

In 3D, each vector corresponds to a point of the physical space. In Quantum Mechanics, each point in the state space (each wave function) corresponds to a possible state of the system. The number of wave functions in a basis of the state space is going to be the number of possible linearly independent states of the system. For example:

The spin of an electron φ_+ is spin up, while φ_- is spin down. These are the basis functions.

The state space is 2D. So the possible states for the spin of an electron are going to be wavefunctions of the form:

 $\psi_3 = a\varphi_+ + b\varphi_-$ where $a, b \in \mathbb{C}$.

Postulate 1

All the information about a system is contained in its' wave function ψ , belonging to a state space.

(Using ψ rather than $\psi(x, y, etc)$. $\cos \psi$ could be position in space, momentum space etc. Makes it simpler.)

Postulate 2

To every measurable quantity, there is an associated hermitian operator of observable.

Postulate 3

The only possible result of the measurement of a physical quantitiy is one of the eigenvalues of the corresponding observable

Postulate 4

a) Observables with a discrete spectrum of eigenvalues:

When measuring a physical quantity corresponding to the observable \hat{A} on a system in a normalized state ψ , the probability of the result being equal to the eigenvalue λ_n

of \hat{A} will be equal to the square of the norm of the projection of ψ onto the subspace associated to λ_n .

(i) Case λ_n is non-degenerate with Eigenfunction ϕ_n . Then ϕ_n is a basis for the subspace associated to λ_n . The projection of ψ onto this subspace is $\psi_{\lambda_n} = \langle \varphi_n, \psi \rangle \phi_n$. Then the probability of measuring λ_n is

$$P(\lambda_n) = \left\| \psi_{\lambda_n} \right\|^2 = \left| \langle \varphi_n, \psi \rangle \right|^2.$$

(ii) λ_n is degenerate, with orthonormal eigenfunctions $\phi_1, \phi_2, \phi_3, ..., \phi_p$. The projection of ψ onto the subspace associated with λ_n is

$$\psi_{\lambda_n} = \sum_{i=1}^{p} \langle \phi_i, \psi \rangle \phi_i$$
, and the probability is $P(\lambda_n) = \left\| \psi_{\lambda_n} \right\|^2 = \sum_{i=1}^{p} \left| \langle \phi_i, \psi \rangle \right|^2$.

b) The observable has a continuous non-degenerate spectrum of eigenvalues

When the physical quantity corresponding to \hat{A} is measured on a normalized state ψ ,

the probability of obtaining a result between α and $\alpha + d\alpha$ is equal to:

 $P(\alpha) = |\langle \phi_{\alpha}, \psi \rangle|^2 dx$, where ϕ_{α} is the eigenfunction associated to the eigenvalue α of \hat{A} .

Postulate 5

If the measurement of an observable \hat{A} on a normalized state ψ yields λ_n , then the state of the system immediately after the measurement is the normalized projection of ψ onto the subspace associated with λ_n .

Postulate 6

The time evolution of the wave function $\psi(t)$ is governed by the Schrödinger

equation $i\hbar \frac{\partial \psi(t)}{\partial t} = \hat{H}\psi(t)$ where (we can postulate) \hat{H} is the observable associated to the total energy of the system (the Hamiltonian).

Example: in a 3D state space, $\varphi_1, \varphi_2, \varphi_3$ form an orthonormal basis and \hat{A} is an observable defined by:

$$\hat{A}\varphi_1 = a(\varphi_1 - \varphi_2)$$
$$\hat{A}\varphi_2 = a(\varphi_2 - \varphi_1)$$

$$\hat{A}\varphi_3 = 2a\varphi_3$$

with a being a real constant.

(i) What values can be obtained from measuring
$$\hat{A}$$
?
 $A_{ij} = \langle \varphi_j, \hat{A}\varphi_j \rangle$
 $A_{11} = \langle \varphi_1, \hat{A}\varphi_1 \rangle = \langle \varphi_1, a(\varphi_1 - \varphi_2) \rangle = \langle \varphi_1, a\varphi_1 \rangle + \langle \varphi_1, -a\varphi_2 \rangle = a \langle \varphi_1, \varphi_1 \rangle - a \langle \varphi_1, \varphi_2 \rangle = a$
 $A_{12} = \langle \varphi_1, \hat{A}\varphi_2 \rangle = \langle \varphi_1, a(\varphi_2 - \varphi_1) \rangle = a \langle \varphi_1, \varphi_2 \rangle - a \langle \varphi_1, \varphi_1 \rangle = -a$
 $A = \begin{pmatrix} a & -a & 0 \\ -a & a & 0 \\ 0 & 0 & 2a \end{pmatrix}$
 $\begin{vmatrix} a - \lambda & -a & 0 \\ -a & a - \lambda & 0 \\ 0 & 0 & 2a - \lambda \end{vmatrix} = 0$
where λ is the eigenvalue.
 $(2a - \lambda) [(a - \lambda)^2 - a^2] = 0$
 $\lambda = 2a, \lambda = 0, \lambda = 2a.$
 $\lambda = 0:$
 $\begin{pmatrix} a & -a & 0 \\ -a & a & 0 \\ 0 & 0 & 2a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $ax - ay = 0$

-ax + ay = 02az = 0So: z = 0x = y. So eigenfunctions will be in the form of (x, x, 0). For $\lambda = 2a$: $\begin{pmatrix} -a & -a & 0 \\ -a & -a & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ So we have: -ax - ay = 0-ax - ay = 00z = 0So: x = -y

z can be anything.

So eigenfunctions are of the form (x, -x, z). We have the freedom to choose x and z. We choose them by using that he eigenfunction must be orthogonal.

Eigenvalues	Eigenfunction	Normalised eigenfunctions
2a	$\varphi_1 - \varphi_2$	$\frac{1}{\sqrt{2}}(\varphi_1-\varphi_2)=\mu_1$
0	$\varphi_1 + \varphi_2$	$\frac{1}{\sqrt{2}}(\varphi_1+\varphi_2)=\mu_2$
2a	ϕ_3	$\varphi_3 = \mu_3$

(ii) A system at time t = 0 is described by a normalised wave function

$$\psi = \frac{1}{3}\varphi_1 - \frac{2i}{3}\varphi_2 + \frac{2}{3}\varphi_3$$

If \hat{A} is measured at t = 0, what results can be found and with what probability? What is the state of the system immediately after the measurement?

If we use postulate 4, then $P(0) = \|\psi_0\|^2$ where ψ_0 is the projection of ψ to the subspace corresponding to 0.

$$\psi_0 = \langle \mu_2, \psi \rangle \mu_2$$

$$/ 1 \qquad \qquad 1 \qquad 2i \qquad 2 \qquad \rangle$$

$$\left\langle \frac{1}{\sqrt{2}} (\varphi_1 + \varphi_2), \frac{1}{3} \varphi_1 - \frac{2i}{3} \varphi_2 + \frac{2}{3} \varphi_3 \right\rangle = \frac{1}{3\sqrt{2}} \langle \varphi_1, \varphi_1 \rangle - \frac{2i}{3\sqrt{3}} \langle \varphi_2, \varphi_2 \rangle = \frac{1}{3\sqrt{2}} - \frac{\sqrt{2}i}{3}$$

(all the rest are equal to 0. The ones here are equal to 1...)

equal to 1...) So:

$$\psi_0 = \left(\frac{1}{3\sqrt{2}} - \frac{\sqrt{2}i}{3}\right) \mu_2.$$
$$P(0) = \left|\frac{1}{3\sqrt{2}} - \frac{\sqrt{2}i}{3}\right|^2 = \frac{5}{18}$$

Now, find $P(2a) = ||\psi_{2a}||^2$ $\psi_{2a} = \langle \mu_1, \psi \rangle \mu_1 + \langle \mu_3, \psi \rangle \mu_3 = \left(\frac{1}{3\sqrt{2}} + i\frac{\sqrt{2}}{3}\right) \mu_1 + \frac{2}{3}\mu_3$ $P(2a) = \left|\frac{1}{3\sqrt{2}} + i\frac{\sqrt{2}}{3}\right|^2 + \left|\frac{2}{3}\right|^2 = \frac{13}{18}$

Immediately after measuring 0, ψ_0 s normalized i.e. $\sqrt{\frac{18}{5}}\psi_0$

Immediately after measuring 2a, the state of the system is $\sqrt{\frac{18}{13}}\psi_{2a}$.

Evolution in time of conservative systems

If the Hamiltonian of a physical system does not depend ot time, the system is said to be conservative.

If \hat{H} has a discrete non-degenerate spectrum of eigenvalues E_n and an orthonormal set of eigenfunctions ϕ_n , then;

$$\hat{H}\phi_n = E_n\phi_n$$

$$i\hbar \frac{\partial \psi_n(x,t)}{\partial t} = \hat{H}\psi_n(x,t)$$

$$\psi_n(x,t) = C_n(t)\phi_n(x)$$

$$i\hbar\phi_n(x)\frac{dC_n(t)}{dt} = C_n(t)\hat{H}\phi_n(x)$$

$$i\hbar \frac{1}{C_n(t)}\frac{dC_n(t)}{dt} = \frac{1}{\phi_n(x)}\hat{H}\phi_n(x)$$

$$i\hbar \frac{1}{C_n(t)}\frac{dC_n(t)}{dt} = E_n$$

Integrating in time between 0 and t;

$$C_{n}(t) = C_{n}(0)e^{-\frac{i}{\hbar}E_{n}t}$$

$$\psi_{n}(x,t) = C_{n}(t)\phi_{n}(t) = C_{n}(0)e^{-\frac{i}{\hbar}E_{n}t}\phi_{n}(x)$$

$$\hat{H}\psi_{n}(x,t) = C_{n}(0)e^{-\frac{i}{\hbar}E_{n}t}\hat{H}\phi_{n}(x) = E_{n}C_{n}(0)e^{-\frac{i}{\hbar}E_{n}t}\phi_{n}(x)$$

$$\psi(x,t) = \sum_{n}A_{n}\psi_{n}(x,t)$$

$$\psi(x,t) = \sum_{n}A_{n}C_{n}(0)e^{-\frac{i}{\hbar}E_{n}t}\phi_{n}(x)$$