3) The Postulates of Quantum Mechanics

The State Space

In 3D, each vector corresponds to a point of the physical space. In Quantum Mechanics, each point in the state space (each wave function) corresponds to a possible state of the system. The number of wave functions in a basis of the state space is going to be the number of possible linearly independent states of the system. For example:
The spin of an electron φ_{+}is spin up, while φ_{-}is spin down. These are the basis functions.
The state space is 2D. So the possible states for the spin of an electron are going to be wavefunctions of the form:
$\psi_{3}=a \varphi_{+}+b \phi_{-}$
where $a, b \in \mathbb{C}$.

Postulate 1

All the information about a system is contained in its' wave function ψ, belonging to a state space.
(Using ψ rather than $\psi(x, y, e t c) . \cos \psi$ could be position in space, momentum space etc. Makes it simpler.)

Postulate 2

To every measurable quantity, there is an associated hermitian operator of observable.

Postulate 3

The only possible result of the measurement of a physical quantitiy is one of the eigenvalues of the corresponding observable

Postulate 4

a) Observables with a discrete spectrum of eigenvalues:

When measuring a physical quantity corresponding to the observable \hat{A} on a system in a normalized state ψ, the probability of the result being equal to the eigenvalue λ_{n} of \hat{A} will be equal to the square of the norm of the projection of ψ onto the subspace associated to λ_{n}.
(i) Case λ_{n} is non-degenerate with Eigenfunction ϕ_{n}. Then ϕ_{n} is a basis for the subspace associated to λ_{n}. The projection of ψ onto this subspace is $\psi_{\lambda_{n}}=\left\langle\varphi_{n}, \psi\right\rangle \phi_{n}$. Then the probability of measuring λ_{n} is

$$
P\left(\lambda_{n}\right)=\left\|\psi_{\lambda_{n}}\right\|^{2}=\left|\left\langle\varphi_{n}, \psi\right\rangle\right|^{2} .
$$

(ii) $\quad \lambda_{n}$ is degenerate, with orthonormal eigenfunctions $\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{p}$. The projection of ψ onto the subspace associated with λ_{n} is $\psi_{\lambda_{n}}=\sum_{i}^{p}\left\langle\phi_{i}, \psi\right\rangle \phi_{i}$, and the probability is $P\left(\lambda_{n}\right)=\left\|\psi_{\lambda_{n}}\right\|^{2}=\sum_{i=1}^{p}\left|\left\langle\phi_{i}, \psi\right\rangle\right|^{2}$.
b) The observable has a continuous non-degenerate spectrum of eigenvalues

When the physical quantity corresponding to \hat{A} is measured on a normalized state ψ,
the probability of obtaining a result between α and $\alpha+d \alpha$ is equal to:
$P(\alpha)=\left|\left\langle\phi_{\alpha}, \psi\right\rangle\right|^{2} d x$, where ϕ_{α} is the eigenfunction associated to the eigenvalue α of \hat{A}.

Postulate 5

If the measurement of an observable \hat{A} on a normalized state ψ yields λ_{n}, then the state of the system immediately after the measurement is the normalized projection of ψ onto the subspace associated with λ_{n}.

Postulate 6

The time evolution of the wave function $\psi(t)$ is governed by the Schrödinger equation $\operatorname{ih} \frac{\partial \psi(t)}{\partial t}=\hat{H} \psi(t)$ where (we can postulate) \hat{H} is the observable associated to the total energy of the system (the Hamiltonian).
Example: in a 3D state space, $\varphi_{1}, \varphi_{2}, \varphi_{3}$ form an orthonormal basis and \hat{A} is an observable defined by:

$$
\begin{aligned}
& \hat{A} \varphi_{1}=a\left(\varphi_{1}-\varphi_{2}\right) \\
& \hat{A} \varphi_{2}=a\left(\varphi_{2}-\varphi_{1}\right) \\
& \hat{A} \varphi_{3}=2 a \varphi_{3}
\end{aligned}
$$

with a being a real constant.
(i) What values can be obtained from measuring \hat{A} ?

$$
\begin{aligned}
& A_{i j}=\left\langle\varphi_{j}, \hat{A} \varphi_{j}\right\rangle \\
& A_{11}=\left\langle\varphi_{1}, \hat{A} \varphi_{1}\right\rangle=\left\langle\varphi_{1}, a\left(\varphi_{1}-\varphi_{2}\right)\right\rangle=\left\langle\varphi_{1}, a \varphi_{1}\right\rangle+\left\langle\varphi_{1},-a \varphi_{2}\right\rangle=a \underbrace{\left\langle\varphi_{1}, \varphi_{1}\right\rangle}_{1}-a \underbrace{\left\langle\varphi_{1}, \varphi_{2}\right\rangle}_{0}=a \\
& A_{12}=\left\langle\varphi_{1}, \hat{A} \varphi_{2}\right\rangle=\left\langle\varphi_{1}, a\left(\varphi_{2}-\varphi_{1}\right)\right\rangle=a\left\langle\varphi_{1}, \varphi_{2}\right\rangle-a\left\langle\varphi_{1}, \varphi_{1}\right\rangle=-a \\
& A=\left(\begin{array}{ccc}
a & -a & 0 \\
-a & a & 0 \\
0 & 0 & 2 a
\end{array}\right) \\
& \left|\begin{array}{ccc}
a-\lambda & -a & 0 \\
-a & a-\lambda & 0 \\
0 & 0 & 2 a-\lambda
\end{array}\right|=0
\end{aligned}
$$

where λ is the eigenvalue.

$$
\begin{aligned}
& (2 a-\lambda)\left[(a-\lambda)^{2}-a^{2}\right]=0 \\
& \lambda=2 a, \lambda=0, \lambda=2 a . \\
& \lambda=0: \\
& \left(\begin{array}{ccc}
a & -a & 0 \\
-a & a & 0 \\
0 & 0 & 2 a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& a x-a y=0
\end{aligned}
$$

$-a x+a y=0$
$2 a z=0$
So:
$z=0$
$x=y$.
So eigenfunctions will be in the form of $(x, x, 0)$.
For $\lambda=2 a$:
$\left(\begin{array}{ccc}-a & -a & 0 \\ -a & -a & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
So we have:
$-a x-a y=0$
$-a x-a y=0$
$0 z=0$
So:
$x=-y$
z can be anything.
So eigenfunctions are of the form $(x,-x, z)$. We have the freedom to choose x and z .
We choose them by using tha the eigenfunction must be orthogonal.

Eigenvalues	Eigenfunction	Normalised eigenfunctions
2 a	$\varphi_{1}-\varphi_{2}$	$\frac{1}{\sqrt{2}}\left(\varphi_{1}-\varphi_{2}\right)=\mu_{1}$
0	$\varphi_{1}+\varphi_{2}$	$\frac{1}{\sqrt{2}}\left(\varphi_{1}+\varphi_{2}\right)=\mu_{2}$
2 a	φ_{3}	$\varphi_{3}=\mu_{3}$

(ii) A system at time $t=0$ is described by a normalised wave function $\psi=\frac{1}{3} \varphi_{1}-\frac{2 i}{3} \varphi_{2}+\frac{2}{3} \varphi_{3}$
If \hat{A} is measured at $t=0$, what results can be found and with what probability?
What is the state of the system immediately after the measurement?
If we use postulate 4 , then $P(0)=\left\|\psi_{0}\right\|^{2}$ where ψ_{0} s the projection of ψ to the subspace corresponding to 0 .

$$
\psi_{0}=\left\langle\mu_{2}, \psi\right\rangle \mu_{2}
$$

$$
\left\langle\frac{1}{\sqrt{2}}\left(\varphi_{1}+\varphi_{2}\right), \frac{1}{3} \varphi_{1}-\frac{2 i}{3} \varphi_{2}+\frac{2}{3} \varphi_{3}\right\rangle=\frac{1}{3 \sqrt{2}}\left\langle\varphi_{1}, \varphi_{1}\right\rangle-\frac{2 i}{3 \sqrt{3}}\left\langle\varphi_{2}, \varphi_{2}\right\rangle=\frac{1}{3 \sqrt{2}}-\frac{\sqrt{2} i}{3}
$$

(all the rest are equal to 0 . The ones here are equal to $1 \ldots$)
So:

$$
\psi_{0}=\left(\frac{1}{3 \sqrt{2}}-\frac{\sqrt{2} i}{3}\right) \mu_{2} .
$$

$$
P(0)=\left|\frac{1}{3 \sqrt{2}}-\frac{\sqrt{2} i}{3}\right|^{2}=\frac{5}{18}
$$

Now, find $P(2 a)=\left\|\psi_{2 a}\right\|^{2}$
$\psi_{2 a}=\left\langle\mu_{1}, \psi\right\rangle \mu_{1}+\left\langle\mu_{3}, \psi\right\rangle \mu_{3}=\left(\frac{1}{3 \sqrt{2}}+i \frac{\sqrt{2}}{3}\right) \mu_{1}+\frac{2}{3} \mu_{3}$
$P(2 a)=\left|\frac{1}{3 \sqrt{2}}+i \frac{\sqrt{2}}{3}\right|^{2}+\left|\frac{2}{3}\right|^{2}=\frac{13}{18}$
Immediately after measuring $0, \psi_{0}$ s normalized i.e. $\sqrt{\frac{18}{5}} \psi_{0}$
Immediately after measuring 2 a , the state of the system is $\sqrt{\frac{18}{13}} \psi_{2 a}$.

Evolution in time of conservative systems

If the Hamiltonian of a physical system does not depend ot time, the system is said to be conservative.

If \hat{H} has a discrete non-degenerate spectrum of eigenvalues E_{n} and an orthonormal set of eigenfunctions ϕ_{n}, then;

$$
\hat{H} \phi_{n}=E_{n} \phi_{n}
$$

$i \hbar \frac{\partial \psi_{n}(x, t)}{\partial t}=\hat{H} \psi_{n}(x, t)$
$\psi_{n}(x, t)=C_{n}(t) \phi_{n}(x)$
$i \hbar \phi_{n}(x) \frac{d C_{n}(t)}{d t}=C_{n}(t) \hat{H} \phi_{n}(x)$
$i \hbar \frac{1}{C_{n}(t)} \frac{d C_{n}(t)}{d t}=\frac{1}{\phi_{n}(x)} \hat{H} \phi_{n}(x)$
$i \hbar \frac{1}{C_{n}(t)} \frac{d C_{n}(t)}{d t}=E_{n}$
Integrating in time between 0 and t;
$C_{n}(t)=C_{n}(0) e^{-\frac{i}{\hbar} E_{n} t}$
$\psi_{n}(x, t)=C_{n}(t) \phi_{n}(t)=C_{n}(0) e^{-\frac{i}{\hbar} E_{n} t} \phi_{n}(x)$
$\hat{H} \psi_{n}(x, t)=C_{n}(0) e^{-\frac{i}{\hbar} E_{n} t} \hat{H} \phi_{n}(x)=E_{n} C_{n}(0) e^{-\frac{i}{\hbar} E_{n} t} \phi_{n}$
$\psi(x, t)=\sum_{n} A_{n} \psi_{n}(x, t)$
$\psi(x, t)=\sum_{n} A_{n} C_{n}(0) e^{-\frac{i}{\hbar} E_{n} t} \phi_{n}(x)$

