11. Time Independent Perturbation Theory

Objective: determine the eigenfunctions and eigenvalues of a Hamiltonian $\hat{H}=\hat{H}^{0}+\lambda \hat{H}^{\prime}$
where \hat{H}^{0} is a known solution for a similar problem, and \hat{H}^{\prime} is the perturbation from this. The matrix elements of \hat{H}^{0} and \hat{H}^{\prime} are of the same size.
λ is a small number, so if \hat{H}^{0} and \hat{H}^{\prime} are the same size, the latter will give a small contribution to the result. λ is real, $|\lambda| \ll 1$.

We assume that we know the eigenfunctions and eigenvalues of \hat{H}^{0},

$$
\hat{H}^{0} \varphi_{n}{ }^{0}=E_{n}{ }^{0} \varphi_{n}{ }^{0}
$$

with $\varphi_{n}{ }^{0}$ orthonormal and $E_{n}{ }^{0}$ non-degenerate.
We would like to solve

$$
\hat{H} \varphi_{n}=E_{n} \varphi_{n}(11-1)
$$

As λ is a small number, we can expand around it.

$$
\begin{aligned}
& \varphi_{n}=\varphi_{n}{ }^{0}+\lambda \varphi_{n}{ }^{\prime}+0\left(\lambda^{2}\right) \\
& E_{n}=E_{n}^{0}+\lambda E_{n}{ }^{\prime}+0\left(\lambda^{2}\right)
\end{aligned}
$$

We chose the phase of φ_{n} such that

$$
\begin{aligned}
\left\langle\varphi_{n}, \varphi_{n}{ }^{0}\right\rangle & =0(11-2) \\
\left(\hat{H}^{0}+\lambda \hat{H}^{\prime}\right)\left(\varphi_{n}{ }^{0}+\lambda \varphi_{n}{ }^{\prime}\right) & =\left(E_{n}{ }^{0}+\lambda E_{n}{ }^{\prime}\right)\left(\varphi_{n}{ }^{0}+\lambda \varphi_{n}{ }^{\prime}\right)
\end{aligned}
$$

At order λ^{0} :

$$
\hat{H}^{\prime} \varphi_{n}{ }^{0}+\hat{H}^{0} \varphi_{n}{ }^{\prime}=E_{n}^{0} \varphi_{n}{ }^{\prime}+E_{n}{ }^{\prime} \varphi_{n}{ }^{0}(11-3)
$$

We take the scalar product with $\varphi_{n}{ }^{0}$:

$$
\begin{gathered}
\left\langle\varphi_{n}{ }^{0}, \hat{H}^{\prime} \varphi_{n}{ }^{0}\right\rangle+\langle{\left.\varphi_{n}{ }^{0}, \hat{H}^{0} \varphi_{n}{ }^{\prime}\right\rangle=E_{n}{ }^{0} \underbrace{\left\langle\varphi_{n}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle}_{0}+E_{n}{ }^{\prime} \underbrace{\left\langle\phi_{n}{ }^{0}, \varphi_{n}{ }^{0}\right\rangle}_{1}(11-4)}_{\left\langle\varphi_{n}{ }^{0}, \hat{H}^{0} \varphi_{n}{ }^{\prime}\right\rangle=\langle\underbrace{\hat{H}^{0} \varphi^{0}}_{E_{n}{ }^{0} \varphi_{n}{ }^{0}}, \varphi_{n}{ }^{\prime}\rangle=E_{n}{ }^{0} \underbrace{\left\langle\varphi_{n}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle}_{0}}^{E_{n}{ }^{\prime}=\left\langle\varphi_{n}{ }^{0}, \hat{H}^{\prime} \varphi_{n}{ }^{0}\right\rangle}
\end{gathered}
$$

So we can say that the total energy is

$$
\begin{aligned}
E_{n} & =E_{n}{ }^{0}+\lambda E_{n}{ }^{\prime} \\
& =E_{n}{ }^{0}+\lambda\left\langle\varphi_{n}{ }^{0}, \hat{H}^{\prime}, \varphi_{n}{ }^{0}\right\rangle
\end{aligned}
$$

Going back to (11-3), and taking the scalar product with $\varphi_{i}{ }^{0}(i \neq n)$:

$$
\begin{equation*}
\left\langle\varphi_{i}{ }^{0}, \hat{H}^{\prime}, \varphi_{n}{ }^{0}\right\rangle+\left\langle\varphi_{i}{ }^{0}, \hat{H}^{0}, \varphi_{n}{ }^{\prime}\right\rangle=E_{n}{ }^{0}\left\langle\varphi_{i}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle+E_{n}{ }^{\prime}\left\langle\varphi_{i}{ }^{0}, \varphi_{n}{ }^{0}\right\rangle \tag{11-6}
\end{equation*}
$$

We know that $\left\langle\varphi_{i}{ }^{0}, \varphi_{n}{ }^{0}\right\rangle=0$, and $\left\langle\varphi_{i}{ }^{0}, \hat{H}^{0}, \varphi_{n}{ }^{\prime}\right\rangle=\left\langle\hat{H}^{0} \varphi_{i}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle=E_{i}^{0}\left\langle\varphi_{i}{ }^{0}, \varphi_{n}\right\rangle$. So,
(11-6) can be written as:

$$
\left\langle\varphi_{i}{ }^{0}, \hat{H}^{\prime}, \varphi_{n}{ }^{0}\right\rangle=E_{n}{ }^{0}\left\langle\varphi_{i}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle-E_{i}\left\langle\varphi_{i}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle
$$

$$
\left\langle\varphi_{i}^{0}, \varphi_{n}{ }^{\prime}\right\rangle=\frac{\left\langle\varphi_{i}^{0}, \hat{H}^{\prime}, \varphi_{n}{ }^{0}\right\rangle}{E_{n}^{0}-E_{i}^{0}}(11-7)
$$

$\varphi_{n}{ }^{\prime}$ is an orthonormal basis of the state space. We can write any eigenfunction as a linear combination:

$$
\varphi_{n^{\prime}}=\sum_{p} c_{p} \varphi_{p}{ }^{0},
$$

where

$$
c_{p}=\left\langle\varphi_{p}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle .
$$

We know that $\left\langle\varphi_{n}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle=0$, hence $c_{n}=0$. So we can write

$$
\varphi_{n^{\prime}}=\sum_{p \neq n} c_{p} \varphi_{p}{ }^{0}
$$

Using the equation for $\left\langle\varphi_{i}{ }^{0}, \varphi_{n}{ }^{\prime}\right\rangle$ above, we can write:

$$
\varphi_{n^{\prime}}=\sum_{p \neq n} \frac{\left\langle\varphi_{p}{ }^{0}, \hat{H}^{\prime}, \varphi_{n}{ }^{0}\right\rangle}{E_{n}{ }^{0}-E_{p}{ }^{0}} \varphi_{p}{ }^{0}
$$

So we can write

$$
\varphi_{n}=\varphi_{n}{ }^{0}+\lambda \varphi_{n}{ }^{\prime}
$$

Example: find the eigenfunctions and eigenvalues to the first order α of the Hamiltonian corresponding to the potential

$\hat{H}^{0}=$ infinite square well. $|\alpha| \ll 1$

$$
\begin{aligned}
\hat{H} & =\hat{H}^{0}+\alpha \hat{H}^{\prime} \\
\hat{H}^{\prime} & = \begin{cases}1 & |x| \leq b \\
0 & |x|>b\end{cases}
\end{aligned}
$$

We know that the energy for an infinite square well is:

$$
\begin{gathered}
E_{n}{ }^{0}=\frac{n^{2} \pi^{2} \hbar^{2}}{8 a^{2} m} \\
\varphi_{n}{ }^{0}= \begin{cases}\frac{1}{\sqrt{a}} \cos \frac{n \pi x}{2 a} & n \text { odd } \\
\frac{1}{\sqrt{a}} \sin \frac{n \pi x}{2 a} & n \text { even }\end{cases}
\end{gathered}
$$

We said before that

$$
E_{n}{ }^{\prime}=\left\langle\varphi_{n}{ }^{0}, \hat{H}^{\prime} \varphi_{n}{ }^{0}\right\rangle
$$

Let's look at the correction to the energy level, with $n=1$, and using $\varphi_{1}{ }^{0}=\frac{1}{\sqrt{a}} \cos \frac{n x}{2 a}$, we can write:

$$
E_{1}{ }^{\prime}=\left\langle\varphi_{1}^{0}, \hat{H}^{\prime} \varphi_{1}^{0}\right\rangle=\frac{1}{a} \int_{-b}^{b} \cos \frac{n x}{2 a} 1 \frac{\cos n x}{2 a} d x=\frac{b}{a}+\frac{1}{\pi} \sin \frac{\pi b}{a}
$$

So the first energy level is:

$$
E_{1}=\frac{\pi^{2} \hbar^{2}}{8 a^{2} m}+\alpha\left(\frac{b}{a}+\frac{1}{\pi} \sin \left(\frac{\pi b}{a}\right)\right)
$$

Now look at the second energy level.

$$
E_{2}{ }^{\prime}=\left\langle\varphi_{2}{ }^{0}, \hat{H}^{\prime} \varphi_{2}{ }^{0}\right\rangle=\frac{1}{a} \int_{-b}^{b} \sin \frac{\pi x}{a} \sin \frac{\pi x}{a} d x=\frac{b}{a}-\frac{1}{2 \pi} \sin \frac{2 \pi b}{a}
$$

So the second energy level is:

$$
E_{2}=\frac{4 \pi^{2} \hbar^{2}}{8 a^{2} m}+\alpha\left[\frac{b}{a}-\frac{1}{2 \pi} \sin \frac{2 \pi b}{a}\right]
$$

Now look at $\left\langle\varphi_{p}{ }^{0}, \hat{H}^{\prime} \varphi_{n}{ }^{0}\right\rangle . p \neq n$.

$$
\left\langle\varphi_{p}{ }^{0}, \hat{H}^{\prime} \varphi_{n}{ }^{0}\right\rangle=\int_{-b}^{b} \varphi_{p}{ }^{0} \varphi_{n}{ }^{0} d x
$$

If n is odd, then φ_{n} will be even. If p is even, then φ_{p} in odd.
The scalar product will be 0 if p and n are of different parity (i.e. one odd, one even). It will be none-zero if p and n are either both even, or both odd.

So, if n is odd, p will have to be odd, and $\varphi_{n}{ }^{\prime}($ from (11-7)) is a linear combination of even functions, so it is even. The same applies for odd functions.

