
11. Time Independent Perturbation Theory 
Objective: determine the eigenfunctions and eigenvalues of a Hamiltonian 
Ĥ = Ĥ
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+ !Ĥ '  

where Ĥ 0  is a known solution for a similar problem, and Ĥ ' is the perturbation from 
this. The matrix elements of Ĥ 0  and Ĥ '  are of the same size. 
!  is a small number, so if Ĥ 0  and Ĥ '  are the same size, the latter will give a small 
contribution to the result. !  is real, ! << 1. 
 
We assume that we know the eigenfunctions and eigenvalues of Ĥ 0 , 
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As !  is a small number, we can expand around it. 
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Ĥ
0
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0!
n
' = E

n

0!
n
'+ E

n
'!

n

0  (11-3) 
 
We take the scalar product with !
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So we can say that the total energy is 
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Going back to (11-3), and taking the scalar product with !
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!
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'  is an orthonormal basis of the state space. We can write any eigenfunction as a 

linear combination: 
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Example: find the eigenfunctions and eigenvalues to the first order !  of the 
Hamiltonian corresponding to the potential 
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We know that the energy for an infinite square well is: 
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We said before that 
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Let’s look at the correction to the energy level, with n = 1 , and using 
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So the first energy level is: 

 

E
1
=
! 2
!
2

8a
2
m

+"
b

a
+
1

!
sin

!b
a

#
$%

&
'(

#
$%

&
'(

 

 
Now look at the second energy level. 
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So the second energy level is: 
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Now look at !
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If n  is odd, then !
n

 will be even. If p  is even, then ! p  in odd. 
The scalar product will be 0 if p and n are of different parity (i.e. one odd, one even). 
It will be none-zero if p and n are either both even, or both odd. 
 
So, if n is odd, p will have to be odd, and !

n
'  (from (11-7)) is a linear combination of 

even functions, so it is even. The same applies for odd functions. 


