10. The Hydrogen Atom

10.1 The Ideal Hydrogen Atom

(Gesiarowickz, 8)
The electron moves in the electrostatic field due to the proton (a central potential).

$$
V(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0} r}
$$

Let $\mu_{e}=$ the mass of the electron. The TISE is

$$
\begin{gathered}
{\left[-\frac{\hbar^{2}}{2 \mu_{e}} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right] \psi(\underline{r})=E \psi(\underline{r}) .} \\
\psi(\underline{r})=R_{k, \ell}(r) Y_{\ell, m_{e}}(\theta, \phi),
\end{gathered}
$$

where

$$
\left[-\frac{\hbar^{2}}{2 \mu_{e}}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{\ell(\ell+1)}{r^{2}}\right)-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right] R_{k, \ell}(r)=E_{k, \ell} R_{k, \ell}(r) .
$$

We consider bound states of the electron.

$$
\begin{gathered}
E_{k, \ell}<0, \\
R_{k, \ell}(r)=\sum_{i} a_{i} r^{i} .
\end{gathered}
$$

For the solution not to diverge for $r \gg 1$, the series has to be finite $\left(a_{i}=0, i \geq p\right)$, where p is the maximum value we want to consider. This gives a constraint on the number of different solutions for a given ℓ.

$$
\begin{gathered}
k+\ell=1,2,3, \ldots \\
k=1,2,3, \ldots
\end{gathered}
$$

We know

$$
\begin{gathered}
\ell=0,1,2,3, \ldots \\
n \equiv k+\ell=1,2,3, \ldots \\
\ell=0,1,2, \ldots, n-1
\end{gathered}
$$

So we know that the energy can be represented as,

$$
E_{k, \ell}=E_{n}=-\frac{E_{I}}{n^{2}}
$$

where

$$
E_{I}=\frac{\mu_{e} e^{4}}{2 \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}} \approx 13.6 \mathrm{eV}
$$

Degeneracy of E_{n} can be represented as, for a given n ,

$$
\begin{gathered}
\ell=0,1, \ldots, n-1 \\
m_{\ell}=-\ell,-\ell+1, \ldots, \ell
\end{gathered}
$$

which is $2 \ell+1$ values.

$$
\sum_{\ell=0}^{n-1}(2 \ell+1)=n^{2}
$$

We haven't taken the spin into account yet - $\left[\hat{H}_{c}, \hat{L}^{2}, \hat{L}_{z}, \hat{S}^{2}, \hat{S}_{z}\right]$ are compatible observables, and we have previously only considered $\left\{\hat{H}_{c}, \hat{L}^{2}, \hat{L}_{z}\right\} . s=1 / 2$ for the electron, so $m_{s}=1 / 2,-1 / 2$. Eigenfunctions of \hat{S}^{2} and \hat{S}_{z} are

$$
\left|s, m_{s}\right\rangle=|1 / 2,1 / 2\rangle,|1 / 2,-1 / 2\rangle .
$$

So we will gain a factor of 2 in the previous equation, i.e. $2 n^{2}$ eigenfunctions.
Remember that we define the total angular momentum as

$$
\begin{gathered}
\underline{J}=\underline{L}+\underline{S} \\
\left\{\hat{H}_{C}, \hat{J}^{2}, \hat{J}_{z}, \hat{L}^{2}, \hat{S}^{2}\right\} .
\end{gathered}
$$

We expect to still have degeneracy of $2 n^{2}$ eigenfunctions.
Let $\hat{H}_{c}=\hat{H}_{0}$ for the ideal hydrogen atom.

Compatible observables	Eigenfunctions
$\hat{H}_{0}, \hat{L}^{2}, \hat{L}_{z}, \hat{S}^{2}, \hat{S}_{z}$	$\left\|n, \ell, m_{\ell} m_{s}\right\rangle$
	$(s=1 / 2)$, usually not written.
$\hat{H}_{0}, \hat{J}^{2}, \hat{J}_{z}, \hat{L}^{2}, \hat{S}^{2}$	$\|n, j, m, \ell\rangle$
	$(s=1 / 2)$

$$
\left\langle n, \ell, m_{\ell}, m_{s} \mid n^{\prime}, \ell^{\prime}, m_{\ell}{ }^{\prime}, m_{s}^{\prime}\right\rangle=\delta_{n n} \boldsymbol{\delta}_{\ell \ell} \boldsymbol{\delta}_{m_{\ell} m_{\ell}} \boldsymbol{\delta}_{m_{s} m_{s}}
$$

n	ℓ	m_{ℓ}	m_{s}	Number of states
1	0	0	$-1 / 2,1 / 2$	2
2	0	0	$-1 / 2,1 / 2$	8
	1	$-1,0,1$	$-1 / 2,1 / 2$	
3				18

n	j	m	ℓ	Number of states
1	$1 / 2$	$-1 / 2,1 / 2$	0	2
2	$1 / 2$	$-1 / 2,1 / 2$	0	8
	$1 / 2$	$-1 / 2,1 / 2$	1	
	$3 / 2$	$-3 / 2,-1 / 2,1 / 2,3 / 2$		
3			18	

NB:

$j=\ell+s, \ell+s-1, \ldots,|\ell-s|$
$-j \leq m \leq j$
$-\ell \leq m_{\ell} \leq \ell$

10.2 Fine Structure Corrections

$$
\begin{gathered}
\hat{H}_{0}=-\frac{\hbar^{2}}{2 \mu_{e}} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \\
a_{0}=\frac{4 \pi \varepsilon_{0}}{e^{2}} \frac{\hbar^{2}}{\mu_{e}}
\end{gathered}
$$

The uncertainty in the momentum is

$$
p_{0} \approx \frac{\hbar}{a_{0}}=\alpha \mu_{e} c
$$

where $\alpha=$ structure constant.

$$
a \approx \frac{v}{c}=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}=\frac{1}{137}
$$

If the electron has momentum p, then the total energy

$$
E=c \sqrt{\mu_{e}^{2} c^{2}+p^{2}}=c^{2} \mu_{e} \sqrt{\frac{p^{2}}{c^{2} \mu_{e}{ }^{2}}+1}
$$

(Remember $E^{2}=p^{2} c^{2}+m^{2} c^{4}$)
Expanding this gives

$$
E=\mu_{e} c^{2}+\frac{p^{2}}{2 \mu_{e}}-\frac{p^{4}}{8 \mu_{e}{ }^{3} c^{2}}+\ldots
$$

This gives the first relativistic correction. Taking the ratio of the second and third terms gives

$$
\frac{\frac{p^{4}}{8 \mu_{e} c^{2}}}{\frac{p^{2}}{2 \mu_{e}}}=\frac{p^{2}}{4 \mu_{e} c^{2}}=\frac{1}{4}\left(\frac{v}{c}\right)^{2} \approx \alpha^{2}
$$

so it is only a small correction. How does this change the expectation value for the energy? \hat{H}_{R} represents this change.

$$
\begin{array}{l}
\hat{H}_{R}=-\frac{1}{2 \mu_{e} c^{2}}\left(\frac{\hat{P}^{2}}{2 \mu_{e}}\right)^{2}=-\frac{1}{2 \mu_{e} c^{2}}\left(\hat{H}_{0}+\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right)^{2} \\
\left\langle\hat{H}_{R}\right\rangle
\end{array}=E_{R}=\langle n, j, m, \ell| \hat{H}_{R}|n, j, m, \ell\rangle \quad \begin{array}{rl}
2 \mu_{e} c^{2}
\end{array} \underbrace{\left\langle H_{0}^{2}\right\rangle}_{E_{n}{ }^{2}}+2 \underbrace{\left\langle H_{0}\right\rangle}_{E_{n}}\left\langle\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right\rangle+\left\langle\left(\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right)^{2}\right\rangle] .
$$

To figure out the last two brackets, we need to figure out $\left\langle r^{-1}\right\rangle$ and $\left\langle r^{-2}\right\rangle$.

$$
\begin{gathered}
\left\langle\frac{1}{r}\right\rangle=\frac{1}{a_{0} n^{2}} \\
\left\langle\frac{1}{r^{2}}\right\rangle=\frac{1}{a_{0}^{2} n^{3}(\ell+1 / 2)}
\end{gathered}
$$

So we can now write

$$
\left\langle H_{R}\right\rangle=-\frac{\left|E_{n}\right|}{n} \alpha^{2}\left(\frac{2}{2 \ell+1}-\frac{3}{4 n}\right)
$$

So the correction provides an energy that depends on ℓ and n. If we take $n=2$, then we get values of $\ell=0,1$. Instead of having just one energy level at E_{n}, we now have two at $\hat{H}_{0}+\hat{H}_{R}$, one for each of the two possible ℓ states.

10.3 Spin-Orbit Corrections

\underline{E} : electrostatic field due to the proton.
In the frame of the electron moving with velocity \underline{v}, we see a magnetic field given by

$$
\underline{B}=\frac{1}{c^{2}} \underline{v} \times \underline{E} .
$$

$\phi(r)$: electrostatic potential due to the proton.

$$
\begin{gathered}
\underline{E}=-\nabla \phi=-\frac{r}{r} \frac{d \phi}{d r} \\
\underline{B}=\frac{1}{c^{2} r} \frac{d \phi}{d r} \underline{v} \times \underline{r} .
\end{gathered}
$$

Using the momentum of the electron, we can write

$$
\underline{B}=\frac{1}{r c^{2} \mu_{e}} \frac{d \phi}{d r} \underline{p} \times \underline{r},
$$

where we can write $\underline{p} \times \underline{r}=\underline{\ell}$. In QM , we write

$$
\underline{B}=\frac{1}{r c^{2} \mu_{e}} \frac{d \phi}{d r} \underline{\hat{L}} .
$$

The magnetic momentum associated to the spin is

$$
\underline{\hat{M}_{s}}=-\frac{e}{\mu_{e}} \underline{\hat{S}} .
$$

The interaction of $\underline{\hat{M}_{s}}$ with \underline{B} gives a contribution

$$
\hat{H}_{s o}=-\underline{B} \cdot \underline{\hat{M}_{s}}
$$

In the case of a hydrogen atom, we have

$$
\phi(r)=\frac{e}{4 \pi \varepsilon_{0} r}
$$

so we get

$$
\hat{H}_{S O}=\frac{1}{2} \frac{e^{2}}{\mu_{e}^{2} c^{2} 4 \pi \varepsilon_{0} r^{3}} \underline{\hat{L}} \cdot \underline{\hat{S}}
$$

The half comes from relativistic effects. In can be found using the relativistic Schrödinger equation.

$$
\begin{aligned}
& {\left[\underline{\hat{L}} \cdot \underline{\hat{S}}, \hat{L}_{z}\right] \neq 0} \\
& {\left[\underline{\hat{L}} \cdot \hat{\hat{S}}, \underline{S_{z}}\right] \neq 0}
\end{aligned}
$$

So the eigenfunctions $\left|n, \ell, m_{\ell}, m_{s}\right\rangle$ are not eigenfunctions of $\hat{H}_{S O}$. We can write

$$
\underline{L} \cdot \underline{S}=\frac{\left(\hat{J}^{2}-\hat{L}^{2}-\hat{S}^{2}\right)}{2}
$$

so we can use the other set of eigenfunctions, $|n, j, m, \ell\rangle$ as eigenfunctions of $\hat{H}_{S 0}$. We can write the expectation value of $H_{S 0}$ as

$$
\begin{gathered}
E_{S 0}=\left\langle H_{S 0}\right\rangle=\langle n, j, m, \ell| \hat{H}_{S 0}|n, j, m, \ell\rangle \\
E_{S 0}=\frac{\hbar^{2}}{4} \frac{e^{2}}{\mu_{e}^{2} c^{2} 4 \pi \varepsilon_{0}}[j(j+1)-\ell(\ell+1)-s(s+1)]\left\langle\frac{1}{r^{3}}\right\rangle
\end{gathered}
$$

We can find that

$$
\left\langle\frac{1}{r^{3}}\right\rangle=\frac{1}{a_{0}^{3}} \frac{1}{n^{3} \ell(\ell+1)(2 \ell+1)}
$$

where $\ell \neq 0$. We can rearrange $E_{s 0}$ such that

$$
E_{S 0}=\frac{\left|E_{n}\right|}{n} \alpha^{2}\left(\frac{2}{2 \ell+1}-\frac{2}{2 j+1}\right)
$$

We can make an estimate of the orbital magnitude to get a feel for how significant this is. $\underline{L} \sim \hbar, \underline{S} \sim \hbar, r \sim a_{0}$.

$$
E_{S 0} \sim \frac{e^{2}}{4 \pi \varepsilon_{0} \mu_{e}^{2}} \frac{\hbar^{2}}{a_{0}{ }^{3}}
$$

Comparing this with the standard energy gives

$$
\frac{E_{S 0}}{\frac{e^{2}}{a_{0} 4 \pi \varepsilon_{0}}} \approx \frac{\hbar^{2}}{\mu_{e}^{2} e^{2} a_{0}^{2}}=\alpha^{2} .
$$

We normally put these two perturbations into one correction, the fine structure correction E_{F}.

$$
E_{F}=E_{R}+E_{S 0}=\frac{\left|E_{n}\right|}{n} \alpha^{2}\left(\frac{3}{4 n}-\frac{2}{2 j+1}\right)
$$

This depends on n and j, not ℓ any more. It can be proven that it is also valid for $\ell=0$.

10.4 The Anomalous Zeeman Effect

Magnetic moment associated to \hat{L} is

$$
\underline{\hat{M}_{L}}=-\frac{e}{2 \mu_{e}} \underline{\hat{L}},
$$

which is proportional to the angular momentum. The magnetic moment is associated to the spin.

$$
\underline{\hat{M}_{s}}=-\frac{e}{\mu_{e}} \underline{\hat{S}}
$$

In the presence of an external magnetic field \underline{B},

$$
\hat{H}_{m}=-\underline{B} \cdot \underline{\hat{M}_{L}}-\underline{B} \cdot \underline{\hat{M}_{s}}=-\underline{B}\left(\underline{\hat{M}_{L}}+\underline{\hat{M}_{s}}\right)
$$

For \underline{B} in the " Z " direction:

$$
\hat{H}_{m}=\frac{e B}{2 \mu_{e}}\left(\hat{L}_{z}+2 \hat{S}_{z}\right)
$$

(the 2 is from spin degeneracy?)
Taking the energy to be the expectation value of \hat{H}_{m} :

$$
E_{m}=\left\langle H_{m}\right\rangle=\frac{e B}{2 \mu_{e}}\left(\left\langle L_{z}\right\rangle+2\left\langle S_{z}\right\rangle\right) .
$$

This is around $10^{-4} \frac{\mathrm{eV}}{\mathrm{T}} B$. Remember that for fine splitting, $\left\langle H_{F}\right\rangle \approx 10^{-4} \mathrm{eV}$. So if we have around 1 T of magnetic field, then this contribution will be comparable to that from fine splitting. If it is a lot smaller than 1 Telsa , then it is just a small correction. On the other extreme, if the magnetic field is larger than 1 Tesla then we can neglect the fine splitting contribution. We will now look at these two extremes.

10.4.1 Strong Magnetic Field

For $B \gg 1 T, \hat{H}_{m} \gg \hat{H}_{F}$.
We can neglect \hat{H}_{F} and consider the Hamiltonian to be $\hat{H}_{0}+\hat{H}_{m}$.
From before, we have

$$
\hat{H}_{m}=\frac{e B}{2 \mu_{e}}\left(\hat{L}_{z}+2 \hat{S}_{z}\right) .
$$

$\left|n, \ell, m_{\ell}, m_{s}\right\rangle$ are eigenfunctions of \hat{H}_{m}, and then of $\hat{H}_{0}+\hat{H}_{m}$. The energy from the magnetic field will be

$$
\left\langle H_{m}\right\rangle=\left\langle n, \ell, m_{\ell}, m_{s}\right| \hat{H}_{m}\left|n, \ell, m_{\ell}, m_{s}\right\rangle=\frac{e B}{2 \mu_{e}}\left(\left\langle L_{z}\right\rangle+2\left\langle S_{z}\right\rangle\right)=\frac{e B}{2 \mu_{e}}\left(m_{\ell} \hbar+2 m_{s} \hbar\right)
$$

so the total energy will be

$$
\left\langle H_{0}+H_{m}\right\rangle=E_{n}+\frac{e B \hbar}{2 \mu_{e}}\left(m_{\ell}+2 m_{s}\right)
$$

10.4.2 Weak Magnetic Field

For $B \ll 1 T, \hat{H}_{m} \ll \hat{H}_{F}$.
\hat{H}_{m} gives a small correction to the energy levels of $\hat{H}_{0}+\hat{H}_{f}$.

Eigenfunctions	\hat{H}_{0}	\hat{H}_{F}	\hat{H}_{m}
$\left\|n, \ell, m_{\ell}, m_{s}\right\rangle$	Yes	No	Yes
$\|n, j, m, \ell\rangle$	Yes	Yes	No

Remember that:
$\left[\hat{J}^{2}, L_{z}\right] \neq 0$
$\left[\hat{J}^{2}, S_{z}\right] \neq 0$
For the first line, the compatible observables are:
$\left\{\hat{H}_{0}+\hat{H}_{F}, \hat{J}^{2}, \hat{J}_{z}, \hat{L}^{2}, \hat{S}^{2}\right\}$
So for example, $\left[\hat{H}_{0}+\hat{H}_{F}, \hat{J}_{z}\right]=0$, and also $\left[\hat{H}_{0}+\hat{H}_{F}, \hat{J}_{Y}\right]=\left[\hat{H}_{0}+\hat{H}_{F}, \hat{J}_{x}\right]=0$.
So $\left[\hat{H}_{0}+\hat{H}_{F}, \underline{\hat{J}}\right]=0$. So \underline{J} is a constant of motion.
$\left[\hat{H}_{0}+\hat{H}_{F}, \hat{L}^{2}\right]=0$
$\left[\hat{H}_{0}+\hat{H}_{F}, \hat{S}^{2}\right]=0$

So $\|S\|$ is the constant of motion.
Also, $\|L\|$ is the constant of motion.
We then have $\underline{J}=\underline{L}+\underline{S}$.
As \underline{J} is fixed, then all \underline{L} and \underline{S} can do is precess around \underline{J}.
Let $\underline{L}_{\|}$and $\underline{S_{\|}}$be the components of \underline{L} and \underline{S} in the direction of \underline{J}.
$\langle\underline{L}\rangle=\underline{L_{\|}}$
$\langle\underline{S}\rangle=\underline{S_{\|}}$
$L_{\|}=\frac{(\underline{L} \cdot \underline{J}) \underline{J}}{\|\underline{J}\|^{2}}$
$S_{\|}=\frac{(\underline{S} \cdot \underline{J}) \underline{J}}{\|\underline{J}\|^{2}}$
We will now use these results in QM using operators.
$\left\langle H_{m}\right\rangle=\frac{e B}{2 \mu_{e}}\left(\left\langle L_{z}\right\rangle+2\left\langle S_{z}\right\rangle\right)$
$\underline{\hat{J}}=\underline{\hat{L}}+\underline{\hat{S}} \rightarrow \hat{J}_{z}=\hat{L}_{z}+\hat{S}_{z}$
$\left\langle H_{m}\right\rangle=\frac{e B}{2 \mu_{e}}\left(\left\langle J_{z}\right\rangle+\left\langle S_{z}\right\rangle\right)$
$\left\langle S_{z}\right\rangle=\frac{\langle\underline{S} \cdot \underline{J}\rangle}{\left\langle\hat{J}^{2}\right\rangle}\left\langle J_{z}\right\rangle$
For the state $|n, j, m, \ell\rangle$;
$\underline{\hat{J}}=\underline{\hat{L}}+\underline{\hat{S}} \rightarrow \underline{L}=\underline{J}-\underline{S}$
$\hat{L}^{2}=\hat{J}^{2}+\hat{S}^{2}-2 \underline{\hat{J}} \cdot \underline{\hat{S}}$
$\underline{\hat{J}} \cdot \underline{\hat{S}}=\frac{\hat{J}^{2}+\hat{S}^{2}-\hat{L}^{2}}{2}$
$\langle\underline{\hat{J}} \cdot \underline{\hat{S}}\rangle=\frac{1}{2}\left[\left\langle\hat{J}^{2}\right\rangle+\left\langle\hat{S}^{2}\right\rangle-\left\langle\hat{L}^{2}\right\rangle\right]$

$$
=\frac{\hbar^{2}}{2}[j(j+1)+s(s+1)-\ell(\ell+1)]
$$

$\left\langle S_{z}\right\rangle=\frac{1}{2} \frac{[j(j+1)+s(s+1)-\ell(\ell+1)]}{j(j+1)} m \hbar$
$\left\langle H_{m}\right\rangle=\frac{e B}{2 \mu_{e}}\left[\left\langle J_{z}\right\rangle+\left\langle S_{z}\right\rangle\right]=\frac{e B}{2 \mu_{e}} g m \hbar$
g is called the Lambe factor.
$g=1+\frac{[j(j+1)+3 / 4-\ell(\ell+1)]}{2 j(j+1)}$

Example: Energy levels and degeneracy for $n=2$

1) \hat{H}_{0} eigenfunctions, $\left|n, \ell, m_{\ell}, m_{s}\right\rangle$ or $|n, j, m, \ell\rangle$

Energy $E_{n}=-\frac{E_{i}}{n^{2}}$, so only one possible energy.

E_{n}	Degeneracy $2 n^{2}$
E_{2}	8

2) $\hat{H}_{0}+\hat{H}_{F}$, eigenfunctions $|n, j, m, \ell\rangle$

Energy: $E_{n}+E_{F}(n, j)=E_{2}+E_{F}(j)$
$n=2, \ell=0, \ldots, n-1$, so $\ell=0,1$.
$j=\ell+s, \ldots,|\ell-s|$.
$\ell=0, j=1 / 2$
$\ell=1, j=3 / 2, \ldots, 1 / 2$ in steps of $1 \rightarrow$ only $3 / 2$ and $1 / 2$
$-j \leq m \leq j$

J	m	ℓ
$1 / 2$	$-\frac{1}{2}, \frac{1}{2}$	0,1
$3 / 2$	$-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$	1

$E_{2}+E_{F}(j)$	Degeneracy $2 n^{2}$
$E_{2}+E_{F}(1 / 2)$	4
$E_{2}+E_{F}(3 / 2)$	4

3) Weak Zeeman Effect
$\hat{H}_{0}+\hat{H}_{F}+\hat{H}_{m},|n, j, m, \ell\rangle$
$E=E_{n}+E_{F}(n, j)+E_{m}(j, \ell, m)$
$E_{m}=\mu_{B} B g m$, where $g=\frac{1+j(j+1)+3 / 4-\ell(\ell+1)}{2 j(j+1)}$

j	m	ℓ	g	$m g$
$1 / 2$	$-1 / 2,1 / 2$	0,1	$2,2 / 3$	$-1,1,-1 / 3,1 / 3$
$3 / 2$	$-3 / 2,-1 / 2,1 / 2,3 / 2$	1	$4 / 3$	$-2,-2 / 3,2 / 3,2$

The energy level E_{2} splits into 8 energy levels, with degeneracy 1.
4) Zeeman Effect - Strong Magnetic Field
$\hat{H}_{0}+\hat{H}_{m}$, eigenfunction $\left|n, \ell, m_{\ell}, m_{s}\right\rangle$.
Energy $E=E_{2}+E_{m}\left(m_{\ell}, m_{s}\right)$
$E_{m}=\mu_{B} B\left(m_{\ell}+2 m_{s}\right)$

ℓ	m_{ℓ}	m_{s}	$m_{\ell}+2 m_{s}$
0	0	$-1 / 2,1 / 2$	$-1,1$
1	$-1,0,1$	$-1 / 2,1 / 2$	$-2,0,-1,1,0,2$

E_{m} / μ_{B}	Degeneracy
-2	1
-1	2
0	2
1	2
2	1

The energy level E_{2} is split into 5 .

