10. The Hydrogen Atom

10.1 The Ideal Hydrogen Atom

(Gesiarowickz, 8)

The electron moves in the electrostatic field due to the proton (a central potential).

$$V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}.$$

Let μ_e = the mass of the electron. The TISE is

$$-\frac{\hbar^2}{2\mu_e}\nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r}\bigg]\psi(\underline{r}) = E\psi(\underline{r})$$
$$\psi(\underline{r}) = R_{k,\ell}(r)Y_{\ell,m_\ell}(\theta,\phi),$$

where

$$-\frac{\hbar^{2}}{2\mu_{e}}\left(\frac{d^{2}}{dr^{2}}+\frac{2}{r}\frac{d}{dr}-\frac{\ell(\ell+1)}{r^{2}}\right)-\frac{e^{2}}{4\pi\varepsilon_{0}r}\bigg]R_{k,\ell}(r)=E_{k,\ell}R_{k,\ell}(r).$$

We consider bound states of the electron.

$$E_{k,\ell} < 0,$$
$$R_{k,\ell}(r) = \sum_{i} a_{i} r^{i}.$$

For the solution not to diverge for $r \gg 1$, the series has to be finite $(a_i = 0, i \ge p)$, where p is the maximum value we want to consider. This gives a constraint on the number of different solutions for a given ℓ .

$$k + \ell = 1, 2, 3, \dots$$

 $k = 1, 2, 3, \dots$

We know

$$\ell = 0, 1, 2, 3, \dots$$
$$n \equiv k + \ell = 1, 2, 3, \dots$$
$$\ell = 0, 1, 2, \dots, n - 1$$

So we know that the energy can be represented as,

$$E_{k,\ell} = E_n = -\frac{E_I}{n^2}$$

where

$$E_I = \frac{\mu_e e^4}{2\hbar^2 (4\pi\varepsilon_0)^2} \approx 13.6 eV.$$

Degeneracy of E_n can be represented as, for a given n,

$$\ell = 0, 1, ..., n - 1$$
$$m_{\ell} = -\ell, -\ell + 1, ..., \ell$$

which is $2\ell + 1$ values.

$$\sum_{\ell=0}^{n-1} (2\ell+1) = n^2$$

We haven't taken the spin into account yet - $\begin{bmatrix} \hat{H}_c, \hat{L}^2, \hat{L}_z, \hat{S}^2, \hat{S}_z \end{bmatrix}$ are compatible observables, and we have previously only considered $\{\hat{H}_c, \hat{L}^2, \hat{L}_z\}$. $s = \frac{1}{2}$ for the electron, so $m_s = \frac{1}{2}, -\frac{1}{2}$. Eigenfunctions of \hat{S}^2 and \hat{S}_z are

$$|s,m_s\rangle = |1/2,1/2\rangle, |1/2,-1/2\rangle.$$

So we will gain a factor of 2 in the previous equation, i.e. $2n^2$ eigenfunctions.

Remember that we define the total angular momentum as

$$\underline{J} = \underline{L} + \underline{S},$$

$$\left\{\hat{H}_{C}, \hat{J}^{2}, \hat{J}_{z}, \hat{L}^{2}, \hat{S}^{2}\right\}.$$

We expect to still have degeneracy of $2n^2$ eigenfunctions.

Let $\hat{H}_c = \hat{H}_0$ for the ideal hydrogen atom.

Compatible observables	Eigenfunctions
$\hat{H}_{0}, \hat{L}^{2}, \hat{L}_{z}, \hat{S}^{2}, \hat{S}_{z}$	$ n,\ell,m_\ell m_s \rangle$
	$(s = \frac{1}{2})$, usually not written.
$\hat{H}_{0},\hat{J}^{2},\hat{J}_{z},\hat{L}^{2},\hat{S}^{2}$	$ n, j, m, \ell\rangle$
	$\left(s = \frac{1}{2}\right)$

$$\langle n, \ell, m_{\ell}, m_{s} | n', \ell', m_{\ell}', m_{s}' \rangle = \delta_{nn'} \delta_{\ell\ell'} \delta_{m_{\ell}m_{\ell}'} \delta_{m_{s}m_{s}}$$

п	l	m_ℓ	m _s	Number of states
1	0	0	$-\frac{1}{2},\frac{1}{2}$	2
2	0	0	$-\frac{1}{2},\frac{1}{2}$	8
	1	-1,0,1	$-\frac{1}{2},\frac{1}{2}$	
3				18

п	j	т	l	Number
				of states
1	$\frac{1}{2}$	$-\frac{1}{2},\frac{1}{2}$	0	2
2	$\frac{1}{2}$	$-\frac{1}{2},\frac{1}{2}$	0	8
	1/2	$-\frac{1}{2},\frac{1}{2}$	1	
	3/2	$-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}$		
3				18

NB:

 $j = \ell + s, \ell + s - 1, ..., |\ell - s|$

$$\begin{split} -j &\leq m \leq j \\ -\ell &\leq m_\ell \leq \ell \end{split}$$

10.2 Fine Structure Corrections

$$\hat{H}_0 = -\frac{\hbar^2}{2\mu_e} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r}$$
$$a_0 = \frac{4\pi\varepsilon_0}{e^2} \frac{\hbar^2}{\mu_e}$$

The uncertainty in the momentum is

$$p_0 \approx \frac{\hbar}{a_0} = \alpha \mu_e c$$

where α = structure constant.

$$a \approx \frac{v}{c} = \frac{e^2}{4\pi\varepsilon_0\hbar c} = \frac{1}{137}$$

If the electron has momentum p, then the total energy

$$E = c\sqrt{\mu_e^2 c^2 + p^2} = c^2 \mu_e \sqrt{\frac{p^2}{c^2 \mu_e^2} + 1}$$

(Remember $E^2 = p^2c^2 + m^2c^4$) Expanding this gives

$$E = \mu_e c^2 + \frac{p^2}{2\mu_e} - \frac{p^4}{8\mu_e^3 c^2} + \dots$$

This gives the first relativistic correction. Taking the ratio of the second and third terms gives

$$\frac{\frac{p^4}{8\mu_e^2 c^2}}{\frac{p^2}{2\mu_e}} = \frac{p^2}{4\mu_e c^2} = \frac{1}{4} \left(\frac{v}{c}\right)^2 \approx \alpha^2,$$

so it is only a small correction. How does this change the expectation value for the energy? \hat{H}_{R} represents this change.

$$\hat{H}_{R} = -\frac{1}{2\mu_{e}c^{2}} \left(\frac{\hat{P}^{2}}{2\mu_{e}}\right)^{2} = -\frac{1}{2\mu_{e}c^{2}} \left(\hat{H}_{0} + \frac{e^{2}}{4\pi\varepsilon_{0}r}\right)^{2}$$

$$\left\langle\hat{H}_{R}\right\rangle = E_{R} = \langle n, j, m, \ell | \hat{H}_{R} | n, j, m, \ell \rangle$$

$$= \frac{1}{2\mu_{e}c^{2}} \left[\frac{\langle H_{0}^{2} \rangle}{E_{n}^{2}} + 2\langle H_{0} \rangle \left\langle \frac{e^{2}}{4\pi\varepsilon_{0}r} \right\rangle + \left\langle \left(\frac{e^{2}}{4\pi\varepsilon_{0}r}\right)^{2} \right\rangle \right]$$

To figure out the last two brackets, we need to figure out $\langle r^{-1} \rangle$ and $\langle r^{-2} \rangle$.

$$\left\langle \frac{1}{r} \right\rangle = \frac{1}{a_0 n^2}$$
$$\left\langle \frac{1}{r^2} \right\rangle = \frac{1}{a_0^2 n^3 \left(\ell + \frac{1}{2}\right)}$$

So we can now write

$$\langle H_R \rangle = -\frac{|E_n|}{n} \alpha^2 \left(\frac{2}{2\ell + 1} - \frac{3}{4n} \right)$$

So the correction provides an energy that depends on ℓ and n. If we take n = 2, then we get values of $\ell = 0,1$. Instead of having just one energy level at E_n , we now have two at $\hat{H}_0 + \hat{H}_R$, one for each of the two possible ℓ states.

10.3 Spin-Orbit Corrections

 \underline{E} : electrostatic field due to the proton.

In the frame of the electron moving with velocity \underline{v} , we see a magnetic field given by

$$\underline{B} = \frac{1}{c^2} \underline{v} \times \underline{E} \,.$$

 $\phi(r)$: electrostatic potential due to the proton.

$$\underline{\underline{E}} = -\nabla\phi = -\frac{\underline{r}}{r}\frac{d\phi}{dr},$$
$$\underline{\underline{B}} = \frac{1}{c^2r}\frac{d\phi}{dr}\underline{\underline{v}} \times \underline{\underline{r}}.$$

Using the momentum of the electron, we can write

$$\underline{B} = \frac{1}{rc^2\mu_e} \frac{d\phi}{dr} \underline{p} \times \underline{r} ,$$

where we can write $p \times \underline{r} = \underline{\ell}$. In QM, we write

$$\underline{B} = \frac{1}{rc^2\mu_e} \frac{d\phi}{dr} \hat{\underline{L}}$$

The magnetic momentum associated to the spin is

$$\underline{\hat{M}_s} = -\frac{e}{\mu_e}\underline{\hat{S}} \, .$$

The interaction of $\underline{\hat{M}_s}$ with \underline{B} gives a contribution

$$\hat{H}_{SO} = -\underline{B} \cdot \underline{\hat{M}_s}$$

In the case of a hydrogen atom, we have

$$\phi(r) = \frac{e}{4\pi\varepsilon_0 r}$$

so we get

$$\hat{H}_{so} = \frac{1}{2} \frac{e^2}{\mu_e^2 c^2 4\pi\varepsilon_0 r^3} \hat{\underline{L}} \cdot \hat{\underline{S}}$$

The half comes from relativistic effects. In can be found using the relativistic Schrödinger equation.

$$\left[\underline{\hat{L}} \cdot \underline{\hat{S}}, \hat{L}_{z}\right] \neq 0$$
$$\left[\underline{\hat{L}} \cdot \underline{\hat{S}}, \hat{S}_{z}\right] \neq 0$$

So the eigenfunctions $|n, \ell, m_{\ell}, m_{s}\rangle$ are not eigenfunctions of \hat{H}_{so} . We can write

$$\underline{L} \cdot \underline{S} = \frac{\left(\hat{J}^2 - \hat{L}^2 - \hat{S}^2\right)}{2}$$

so we can use the other set of eigenfunctions, $|n, j, m, \ell\rangle$ as eigenfunctions of \hat{H}_{s0} . We can write the expectation value of H_{s0} as

$$E_{s0} = \langle H_{s0} \rangle = \langle n, j, m, \ell | \hat{H}_{s0} | n, j, m, \ell \rangle$$
$$E_{s0} = \frac{\hbar^2}{4} \frac{e^2}{\mu_e^2 c^2 4\pi\varepsilon_0} [j(j+1) - \ell(\ell+1) - s(s+1)] \langle \frac{1}{r^3} \rangle$$

We can find that

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{1}{a_0^3} \frac{1}{n^3 \ell (\ell+1)(2\ell+1)}$$

where $\ell \neq 0$. We can rearrange E_{s0} such that

$$E_{s0} = \frac{|E_n|}{n} \alpha^2 \left(\frac{2}{2\ell + 1} - \frac{2}{2j + 1} \right)$$

We can make an estimate of the orbital magnitude to get a feel for how significant this is. $\underline{L} \sim \hbar$, $\underline{S} \sim \hbar$, $r \sim a_0$.

$$E_{s0} \sim \frac{e^2}{4\pi\varepsilon_0 {\mu_e}^2} \frac{\hbar^2}{{a_0}^3}$$

Comparing this with the standard energy gives

$$\frac{\frac{E_{s0}}{e^2}}{\frac{e^2}{a_0 4\pi\epsilon_0}} \approx \frac{\hbar^2}{\mu_e^2 e^2 a_0^2} = \alpha^2 \,.$$

We normally put these two perturbations into one correction, the fine structure correction E_F .

$$E_F = E_R + E_{S0} = \frac{|E_n|}{n} \alpha^2 \left(\frac{3}{4n} - \frac{2}{2j+1}\right)$$

This depends on *n* and *j*, not ℓ any more. It can be proven that it is also valid for $\ell = 0$.

10.4 The Anomalous Zeeman Effect

Magnetic moment associated to \hat{L} is

$$\underline{\hat{M}_L} = -\frac{e}{2\mu_e}\underline{\hat{L}},$$

which is proportional to the angular momentum. The magnetic moment is associated to the spin.

$$\underline{\hat{M}_s} = -\frac{e}{\mu_e}\underline{\hat{S}}$$

In the presence of an external magnetic field \underline{B} ,

$$\hat{H}_m = -\underline{B} \cdot \underline{\hat{M}_L} - \underline{B} \cdot \underline{\hat{M}_s} = -\underline{B} \left(\underline{\hat{M}_L} + \underline{\hat{M}_s} \right)$$

For \underline{B} in the "Z" direction:

$$\hat{H}_m = \frac{eB}{2\mu_e} \left(\hat{L}_z + 2\hat{S}_z \right)$$

(the 2 is from spin degeneracy?)

Taking the energy to be the expectation value of \hat{H}_m :

$$E_{m} = \langle H_{m} \rangle = \frac{eB}{2\mu_{e}} (\langle L_{z} \rangle + 2 \langle S_{z} \rangle).$$

This is around $10^{-4} \frac{eV}{T}B$. Remember that for fine splitting, $\langle H_F \rangle \approx 10^{-4} eV$. So if we have around 1T of magnetic field, then this contribution will be comparable to that from fine splitting. If it is a lot smaller than 1 Telsa, then it is just a small correction. On the other extreme, if the magnetic field is larger than 1 Tesla then we can neglect the fine splitting contribution. We will now look at these two extremes.

10.4.1 Strong Magnetic Field

For B >> 1T, $\hat{H}_m >> \hat{H}_F$.

We can neglect \hat{H}_F and consider the Hamiltonian to be $\hat{H}_0 + \hat{H}_m$. From before, we have

$$\hat{H}_m = \frac{eB}{2\mu_e} \left(\hat{L}_z + 2\hat{S}_z \right).$$

 $|n, \ell, m_{\ell}, m_{s}\rangle$ are eigenfunctions of \hat{H}_{m} , and then of $\hat{H}_{0} + \hat{H}_{m}$. The energy from the magnetic field will be

$$\langle H_m \rangle = \langle n, \ell, m_\ell, m_s | \hat{H}_m | n, \ell, m_\ell, m_s \rangle = \frac{eB}{2\mu_e} (\langle L_z \rangle + 2\langle S_z \rangle) = \frac{eB}{2\mu_e} (m_\ell \hbar + 2m_s \hbar)$$

so the total energy will be

$$\left\langle H_0 + H_m \right\rangle = E_n + \frac{eB\hbar}{2\mu_e} \left(m_e + 2m_s \right)$$

10.4.2 Weak Magnetic Field

For B << 1T, $\hat{H}_m << \hat{H}_F$.

 \hat{H}_m gives a small correction to the energy levels of $\hat{H}_0 + \hat{H}_f$.

Eigenfunctions	\hat{H}_0	\hat{H}_{F}	\hat{H}_m
$ n,\ell,m_{\ell},m_{s}\rangle$	Yes	No	Yes
$ n, j, m, \ell\rangle$	Yes	Yes	No

Remember that: $\begin{bmatrix} \hat{I}^2 & I \end{bmatrix} \neq 0$

$$\begin{bmatrix} J^2, L_z \end{bmatrix} \neq 0$$
$$\begin{bmatrix} \hat{J}^2, S_z \end{bmatrix} \neq 0$$

For the first line, the compatible observables are:

 $\left\{ \hat{H}_0 + \hat{H}_F, \hat{J}^2, \hat{J}_z, \hat{L}^2, \hat{S}^2 \right\}$ So for example, $\left[\hat{H}_0 + \hat{H}_F, \hat{J}_z \right] = 0$, and also $\left[\hat{H}_0 + \hat{H}_F, \hat{J}_Y \right] = \left[\hat{H}_0 + \hat{H}_F, \hat{J}_x \right] = 0$. So $\left[\hat{H}_0 + \hat{H}_F, \hat{J} \right] = 0$. So \underline{J} is a constant of motion. $\left[\hat{H}_0 + \hat{H}_F, \hat{L}^2 \right] = 0$ $\left[\hat{H}_0 + \hat{H}_F, \hat{S}^2 \right] = 0$ So ||S|| is the constant of motion.

Also, ||L|| is the constant of motion.

We then have $\underline{J} = \underline{L} + \underline{S}$.

As \underline{J} is fixed, then all \underline{L} and \underline{S} can do is precess around \underline{J} . Let $\underline{L}_{\parallel}$ and $\underline{S}_{\parallel}$ be the components of \underline{L} and \underline{S} in the direction of \underline{J} . $\langle \underline{L} \rangle = \underline{L}_{\parallel}$ $\langle \underline{S} \rangle = \underline{S}_{\parallel}$ $\underline{L}_{\parallel} = \frac{(\underline{L} \cdot \underline{J})\underline{J}}{\|\underline{J}\|^2}$ $\underline{S}_{\parallel} = \frac{(\underline{S} \cdot \underline{J})\underline{J}}{\|\underline{J}\|^2}$

We will now use these results in QM using operators.

$$\langle H_m \rangle = \frac{eB}{2\mu_e} (\langle L_z \rangle + 2 \langle S_z \rangle)$$

$$\hat{\underline{J}} = \hat{\underline{L}} + \hat{\underline{S}} \rightarrow \hat{J}_z = \hat{L}_z + \hat{S}_z$$

$$\langle H_m \rangle = \frac{eB}{2\mu_e} (\langle J_z \rangle + \langle S_z \rangle)$$

$$\langle S_z \rangle = \frac{\langle \underline{S} \cdot \underline{J} \rangle}{\langle \hat{J}^2 \rangle} \langle J_z \rangle$$
For the state $|n, j, m, \ell \rangle;$

$$\hat{\underline{J}} = \hat{\underline{L}} + \hat{\underline{S}} \rightarrow \underline{L} = \underline{J} - \underline{S}$$

$$\hat{\underline{L}}^2 = \hat{J}^2 + \hat{S}^2 - 2\hat{\underline{J}} \cdot \hat{\underline{S}}$$

$$\hat{\underline{J}} \cdot \hat{\underline{S}} = \frac{\hat{J}^2 + \hat{S}^2 - \hat{L}^2}{2}$$

$$\langle \hat{\underline{J}} \cdot \hat{\underline{S}} \rangle = \frac{1}{2} [\langle \hat{J}^2 \rangle + \langle \hat{S}^2 \rangle - \langle \hat{L}^2 \rangle]$$

$$= \frac{\hbar^2}{2} [j(j+1) + s(s+1) - \ell(\ell+1)]$$

$$\langle S_z \rangle = \frac{1}{2} \frac{[j(j+1) + s(s+1) - \ell(\ell+1)]}{j(j+1)} m\hbar$$

$$\langle H_m \rangle = \frac{eB}{2\mu_e} [\langle J_z \rangle + \langle S_z \rangle] = \frac{eB}{2\mu_e} gm\hbar$$

$$g \text{ is called the Lambé factor.}$$

$$g = 1 + \frac{[j(j+1) + \frac{3}{4} - \ell(\ell+1)]}{2j(j+1)}$$

Example: Energy levels and degeneracy for n = 2

1) \hat{H}_0 eigenfunctions, $|n, \ell, m_\ell, m_s\rangle$ or $|n, j, m, \ell\rangle$ Energy $E_n = -\frac{E_i}{n^2}$, so only one possible energy. E_n Degeneracy $2n^2$

E_n	Degeneracy $2n^2$	
E_2	8	

2)
$$\hat{H}_0 + \hat{H}_F$$
, eigenfunctions $|n, j, m, \ell\rangle$
Energy: $E_n + E_F(n, j) = E_2 + E_F(j)$
 $n = 2, \ \ell = 0, ..., n - 1, \text{ so } \ell = 0, 1.$
 $j = \ell + s, ..., |\ell - s|.$
 $\ell = 0, \ j = \frac{1}{2}$
 $\ell = 1, \ j = \frac{3}{2}, ..., \frac{1}{2}$ in steps of $1 \rightarrow \text{ only } \frac{3}{2}$ and $\frac{1}{2}$
 $-j \le m \le j$

J	m	l
1/2	<u>_1 1</u>	0, 1
12	2'2	
$\frac{3}{2}$	$-\frac{3}{-\frac{1}{2}},-\frac{1}{2},\frac{1}{2},\frac{3}{2}$	1
/ 2	$\overline{2},\overline{2},\overline{2},\overline{2},\overline{2}$	

$E_2 + E_F(j)$	Degeneracy $2n^2$
$E_2 + E_F \left(\frac{1}{2}\right)$	4
$E_2 + E_F \left(\frac{3}{2}\right)$	4

3) Weak Zeeman Effect

$$\begin{aligned} \hat{H}_{0} + \hat{H}_{F} + \hat{H}_{m}, & |n, j, m, \ell \\ E &= E_{n} + E_{F}(n, j) + E_{m}(j, \ell, m) \\ E_{m} &= \mu_{B}Bgm, \text{ where } g = \frac{1 + j(j+1) + \frac{3}{4} - \ell(\ell+1)}{2j(j+1)} \\ \\ \frac{j}{1/2} & \frac{m}{1/2}, \frac{\ell}{1/2}, \frac{g}{1/2}, \frac{mg}{0,1} & \frac{2, \frac{2}{3}}{2, \frac{-1}{2}, \frac{1}{2}, \frac{3}{2}} \\ \frac{3}{2} & -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2} & 1 & \frac{4}{3} & -2, -\frac{2}{3}, \frac{2}{3}, 2 \end{aligned}$$

The energy level E_2 splits into 8 energy levels, with degeneracy 1.

4) Zeeman Effect - Strong Magnetic Field $\hat{H}_{0} + \hat{H}_{m}$, eigenfunction $|n, \ell, m_{\ell}, m_{s}\rangle$. Energy $E = E_2 + E_m(m_\ell, m_s)$ $E_m = \mu_B B \big(m_\ell + 2 m_s \big)$

l	m_ℓ	m_s	$m_{\ell} + 2m_s$
0	0	$-\frac{1}{2},\frac{1}{2}$	-1,1
1	-1,0,1	$-\frac{1}{2},\frac{1}{2}$	-2,0,-1,1,0,2

E_m/μ_B	Degeneracy
-2	1
-1	2
0	2
1	2
2	1

The energy level E_2 is split into 5.