10. The Hydrogen Atom

10.1 The Ideal Hydrogen Atom
(Gesiarowickz, 8)

The electron moves in the electrostatic field due to the proton (a central potential).
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We consider bound states of the electron.

E., <0,
RM (r) = Zairi .

For the solution not to diverge for r >>1, the series has to be finite (a,. =0,i2> p),
where p is the maximum value we want to consider. This gives a constraint on the
number of different solutions for a given /.

k+0=1,2,3,..
k=1,2,3,...
We know
(=0,1,2,3,...
n=k+/¢=12,3,...
(=0,1,2,...,n—1
So we know that the energy can be represented as,
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Degeneracy of E, can be represented as, for a given n,
£=0,1,.,n-1
m,=—L,—(+1,..,/
which is 2/+1 values.
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We haven’t taken the spin into account yet - [I:I C,iz,LZ,§ Z,SJ are compatible
observables, and we have previously only considered {ﬁ C,iz,iz} . 8= 12 for the
electron, so m, = %,—%. Eigenfunctions of S? and ﬁz are

som)=[ V5. Vol Vo ).

So we will gain a factor of 2 in the previous equation, i.e. 2n° eigenfunctions.

Remember that we define the total angular momentum as
J=L+S,

(A, 70.0,87).

We expect to still have degeneracy of 2n” eigenfunctions.

Let H .= H , for the ideal hydrogen atom.
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10.2 Fine Structure Corrections
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The uncertainty in the momentum is
pO == auec
a,
where o =structure constant.
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If the electron has momentum p, then the total energy

2
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CH,

(Remember E* = p*c® + m’c*

Expanding this gives
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This gives the first relativistic correction. Taking the ratio of the second and third

terms gives
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so it is only a small correction. How does this change the expectation value for the
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energy? H » represents this change.
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To figure out the last two brackets, we need to figure out <r‘1> and <r‘2> .
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So we can now write
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So the correction provides an energy that depends on ¢ and n . If we take n =2, then
we get values of /=0,1. Instead of having just one energy level at E , we now have

two at H ot H = » one for each of the two possible / states.

10.3 Spin-Orbit Corrections
E : electrostatic field due to the proton.

In the frame of the electron moving with velocity v, we see a magnetic field given by
1

B=—VvXE.
c
¢(r): electrostatic potential due to the proton.
d
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Using the momentum of the electron, we can write
1 do
=— P Xr,
re u, dr —
where we can write pXr={.In QM, we write
1 do -
B=—— 2}
re"u, dr
The magnetic momentum associated to the spin is
Mo=—X3.
M,
The interaction of M . with B gives a contribution
H so=—B" M s
In the case of a hydrogen atom, we have
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The half comes from relativistic effects. In can be found using the relativistic
Schrodinger equation.
[L-S.L.]#0
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So the eigenfunctions n,ﬁ,mwm) are not eigenfunctions of H 5o - We can write
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n,j,m,l) as eigenfunctions of H 0

so we can use the other set of eigenfunctions,
We can write the expectation value of H, as
Ey, =(Hg,)={(n,j.m,!
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where /# 0. We can rearrange E, such that
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We can make an estimate of the orbital magnitude to get a feel for how significant
thisis. L~h, S~h, r~a,.
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Comparing this with the standard energy gives

Eso ~ n’ — 2
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We normally put these two perturbations into one correction, the fine structure
correction E,. .
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This depends on n and j, not /any more. It can be proven that it is also valid for
1=0.

E,.=E,+E, =

10.4 The Anomalous Zeeman Effect
Magnetic moment associated to L is
M L= _LL >
—  2pu,
which is proportional to the angular momentum. The magnetic moment is associated
to the spin.

M,=-=3
H,

In the presence of an external magnetic field B,

i, =-B-M,~B-M,=-B(M,+M.)

For B in the “Z” direction:
N B~ R
A,=~—(L, +28,)
2u,
(the 2 is from spin degeneracy?)
Taking the energy to be the expectation value of H .



E, =(H,)=28 ((L.)+2(s.)).

2u,
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This is around 107" %B. Remember that for fine splitting, <HF> ~10"eV . So if we

have around 1T of magnetic field, then this contribution will be comparable to that
from fine splitting. If it is a lot smaller than 1 Telsa, then it is just a small correction.
On the other extreme, if the magnetic field is larger than 1 Tesla then we can neglect
the fine splitting contribution. We will now look at these two extremes.

10.4.1 Strong Magnetic Field
For B>>1T , H, >>H,.

We can neglect H ~ and consider the Hamiltonian to be H ot H -
From before, we have

A, - ;_Z(z; +25).

n,ﬁ,mwm) are eigenfunctions of H ..» and then of I-AIO +H .- The energy from the

magnetic field will be
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so the total energy will be

(Ho+ H) = B+ S0 (4 2m,)
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10.4.2 Weak Magnetic Field
For B<<IT, H, << H,.

A

H, gives a small correction to the energy levels of ﬁo +H Py

Eigenfunctions g H, H

m

n,l,m,, ms> Yes No Yes
n,j,m, () Yes Yes No

Remember that:

[J7.L.]=0

[72.5.]%0

For the first line, the compatible observables are:

[A,+0,,02,0,1,8)

So for example, [I:]0 + I—AIF,JAJ =0, and also [1':10 + ﬁF,fY ] = [1':10 + PAIF,JAJ =0.

So [ﬁo + fIF,i] =0. So J is a constant of motion.

[A,+1,.2]=0
[, +1,.5]=0



So ||S]| is the constant of motion.
Also,

L|| is the constant of motion.

We then have J =L +3S.
As J is fixed, then all L and § can do is precess around J .
Let L, and S be the components of L and S in the direction of J .

We will now use these results in QM using operators.

(H,)= -((L)+2(s.)

(5= 500

For the state |n, j,m,();

=hz_2[j(j+1)+s(s+1)—f(£+1)]
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g 1s called the Lambé factor.
[j(j+1)+%—£(£+l)}

=1+
2j(j+1)

Example: Energy levels and degeneracy for n =2
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Energy E, =——, so only one possible energy.
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3) Weak Zeeman Effect
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The energy level E, splits into 8 energy levels, with degeneracy 1.

4) Zeeman Effect — Strong Magnetic Field

H,+H, , eigenfunction

n,f,mk,ms> .

Energy E=E, +E, (m,,m,)
E = ‘uBB(mﬁ +2ms)




m,+2m,
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E / Degeneracy
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-1 2
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1 2

2 1

The energy level E,is split into 5.



