
10. The Hydrogen Atom 
 
10.1 The Ideal Hydrogen Atom 
(Gesiarowickz, 8) 
The electron moves in the electrostatic field due to the proton (a central potential). 
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We consider bound states of the electron. 
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For the solution not to diverge for r >> 1 , the series has to be finite a
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where p  is the maximum value we want to consider. This gives a constraint on the 
number of different solutions for a given  ! . 
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Degeneracy of E
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We haven’t taken the spin into account yet - Ĥ
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So we will gain a factor of 2 in the previous equation, i.e. 2n2  eigenfunctions. 
 
Remember that we define the total angular momentum as 
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We expect to still have degeneracy of 2n2  eigenfunctions. 
 
Let Ĥ
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0
 for the ideal hydrogen atom. 
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10.2 Fine Structure Corrections 
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The uncertainty in the momentum is 
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If the electron has momentum p, then the total energy 
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This gives the first relativistic correction. Taking the ratio of the second and third 
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so it is only a small correction. How does this change the expectation value for the 
energy? Ĥ

R
 represents this change. 
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To figure out the last two brackets, we need to figure out r!1  and r!2 . 
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So we can now write 
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So the correction provides an energy that depends on  !  and n . If we take n = 2 , then 
we get values of 

 
! = 0,1 . Instead of having just one energy level at E

n
, we now have 

two at Ĥ
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10.3 Spin-Orbit Corrections 
E : electrostatic field due to the proton. 
In the frame of the electron moving with velocity v , we see a magnetic field given by 
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The half comes from relativistic effects. In can be found using the relativistic 
Schrödinger equation. 
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so we can use the other set of eigenfunctions, 
 
n, j,m,!  as eigenfunctions of Ĥ
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We can find that 
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We can make an estimate of the orbital magnitude to get a feel for how significant 
this is. 
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Comparing this with the standard energy gives 

 

E
S0

e
2

a
0
4!"

0

#
!
2

µ
e

2
e
2
a
0

2
= $

2 . 

We normally put these two perturbations into one correction, the fine structure 
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This depends on n  and j , not  ! any more. It can be proven that it is also valid for 
 ! = 0 . 
 
10.4 The Anomalous Zeeman Effect 
Magnetic moment associated to L̂  is 
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(the 2 is from spin degeneracy?) 
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This is around 10!4
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T
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have around 1T of magnetic field, then this contribution will be comparable to that 
from fine splitting. If it is a lot smaller than 1 Telsa, then it is just a small correction. 
On the other extreme, if the magnetic field is larger than 1 Tesla then we can neglect 
the fine splitting contribution. We will now look at these two extremes. 
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10.4.2 Weak Magnetic Field 
For B << 1T , Ĥ
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0
 Ĥ
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Ĥ
0
+ Ĥ
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So S  is the constant of motion. 

Also, L  is the constant of motion. 
 
We then have J = L + S . 
As J is fixed, then all L  and S  can do is precess around J . 
Let 

 
L
!
 and 

 
S
!
 be the components of L  and S  in the direction of J . 

 

L = L
!
 

 

S = S
!
 

 

L
!
=

L ! J( )J

J
2

 

 

S
!
=

S ! J( )J

J
2

 

We will now use these results in QM using operators. 
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Example: Energy levels and degeneracy for n = 2  
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3) Weak Zeeman Effect 
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F
+ Ĥ
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4) Zeeman Effect – Strong Magnetic Field 
Ĥ
0
+ Ĥ
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