1. 1D Schrödinger Equation

G chapters 3-4.

1.1 the Free Particle

$V \equiv 0$
$i \hbar \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}$
$\Psi(x, t)=A e^{i(k x-\omega t)}$
where $\omega=\frac{k^{2} \hbar}{2 m}$.
Normalization must happen:
$\int_{-\infty}^{\infty}|\Psi(x, t)|^{2}=1$
Here, however:
$\int_{-\infty}^{\infty}|A|^{2} d x \rightarrow \infty$
As this integral represents the probability that the particle can be found, this must always be equal to 1 - anything other than this, and it cannot represent a physical model.

1.2 Wave Packets

Wave packets have to be used to avoid this.
A single plane wave cannot describe a quantum particle, but a wave packet can.
$\psi(x)=\int g(k) e^{i k x} d k$
$\rightarrow g(k)$ is the Fourier transform of $\psi(x)$.
$\Delta x \Delta k \geq 1$
$\Delta x \Delta p \geq \hbar$
(uncertainty principle)

$$
\begin{aligned}
& \Psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(k) e^{i k x} d k=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \tilde{\psi}(p) e^{\frac{i p x}{\hbar}} d p \\
& \tilde{\Psi}\left(p_{x}\right)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \Psi(x) e^{-\frac{i p_{x} x}{\hbar}} d x
\end{aligned}
$$

The latter part is where the wave function depends on the momentum, rather than the position or time. This is denoted by the tilde.

$$
P(p)=|\tilde{\Psi}(p)|^{2} d p
$$

This is the probability that the particle has momentum between p and $p+d p$.

1.3 Time independent potentials

$$
i \hbar \frac{\partial \Psi(x, t)}{\partial t}(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x) \Psi(x, t)
$$

Separation of variables - let $\Psi(x, t)=T(t) \psi(x)$.
$i \hbar \frac{1}{T} \frac{d T}{d t}=-\frac{1}{\psi} \frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x)$
Let E be the constant here.
$i \hbar \frac{d T}{d t}=E T \quad(1.3-1)$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi(1.3-2)$
The solution to (1.3-1) is:
$T(t)=A e^{-\frac{i E t}{\hbar}}$
For (1.3-2),
$-\frac{\hbar^{2}}{2 m} \frac{d \psi^{2}}{d x^{2}}+V(x) \psi(x)=\hat{H} \psi=E \psi$.
This is the Time Independent Schrödinger Equation. It is an eigenvalue problem involving the Hamilton operator. The complete solution is:
$\Psi(x, t)=A \psi(x) e^{-\frac{i E t}{\hbar}}$.
Condition $\psi(x)$ must satisfy to correspond to a physically meaningful wave function.

1) $\psi(x)$ must be single-valued.
2) $\int_{-\infty}^{\infty}|\psi(x)|^{2}$ must be finite.
3) $\psi(x)$ must be continuous everywhere.
$\frac{d \psi}{d x}$ is continuous everywhere except at an infinite discontinuity of the potential.

infinite wall

$$
\psi_{1}(0)=\psi_{2}(0)
$$

$\psi_{1}(0)=\psi_{2}(0)$
$\frac{d \psi_{1}(0)}{d x}=\frac{d \psi_{2}(0)}{d x}$

1.4 Infinite square well

$V(x)=\left\{\begin{array}{cc}0 & -a \leq x \leq a \\ \infty & |x| \cdot a\end{array}\right.$

$\psi_{2}(x)=\psi_{3}(x)=0$
$\frac{\hbar^{2}}{2 m} \frac{d^{2} \boldsymbol{\psi}_{1}}{d x^{2}}+E \psi_{1}=0$
$\psi_{1(x)}=A_{1} e^{k_{1} x}+B_{1} e^{-k_{1} x}$
$k_{1}^{2}=-\frac{2 m}{\hbar^{2}} E$
For $E>0, k_{1}$ is purely imaginary.
$\psi_{1}(x)=A \cos k x+B \sin k x$
where $k=\sqrt{\frac{2 m E}{\hbar^{2}}}$.

$\psi_{1}(-a)=0, \psi_{1}(a)=0$.
$A \cos k a+B \sin k a=0 \quad(x=a)$
$A \cos k a-B \sin k a=0(x=-a)$
If $\sin k a=0$, then;
$k a=n \pi$
$n=0, \pm 1, \pm 2, \ldots$
If $\cos k a=0$, then:
$k a=\frac{n \pi}{2} n= \pm 1, \pm 3, \pm 5, \ldots$
$\psi(x)= \begin{cases}A \cos \frac{n \pi}{2 a} x & n=1,3,5, \ldots \\ B \sin \frac{n \pi}{2 a} x & n=2,4, \ldots\end{cases}$
$\int_{-\infty}^{\infty}|\psi(x)|^{2}=1$
$\int_{-a}^{a}\left|\psi_{1}(x)\right|^{2} d x=1$
$\int_{-a}^{a}|A|^{2} \cos ^{2} \frac{n \pi}{2 a} x d x=1$
$\int_{-a}^{a}|B|^{2} \sin ^{2} \frac{n \pi}{2 a} x d x=1$
$\int_{-\infty}^{\infty} \cos ^{2} \frac{n \pi x}{2 a} d x=a \rightarrow A=\frac{1}{\sqrt{a}}$
$E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{8 a^{2} m}$.
$A=B=\frac{1}{\sqrt{a}}$?

1.5 Probability current

$P(x, t)=|\Psi(x, t)|^{2} d x$ probability density.
the probability of finding the particle at time t between x and $x+d x$.
Probability current:
$j(x, t)=\frac{\hbar}{2 m i}\left(\Psi * \frac{\partial \Psi}{\partial x}-\frac{\partial \Psi *}{\partial x} \Psi\right)$
Replacing (1.5-1) into the Schrödinger equation, we obtain:
$\xrightarrow[\substack{\frac{\partial P(x, t)}{\partial t}+\frac{\partial j(x, t)}{\partial x}}]{\substack{\text { b }}}$
$\int_{a}^{b} \frac{\partial P(x, t)}{\partial t} d x=\frac{\partial}{\partial t} \int_{a}^{b} P(x, t)$
This is the total probability in $[a, b]$.
$=-\int_{a}^{b} \frac{\partial}{\partial x} j(x, t) d x=j(a, t)-j(b, t)$
Example: at time $t=0$,
$\psi(x)=c e^{i k x}=c e^{i \frac{i x_{x} x}{\hbar}}$
$j(x)=|c|^{2} \frac{p_{x}}{m}$
For a particle traveling in the x -axis at velocity v , what is the flux?
$j(x)=v \lambda$ where λ is the density of the particle.
Then a plane wave $c e^{\frac{i p_{x} t}{\hbar}}$ is equivalent to a beam of particles with density $|c|^{2}$.

1.6 Finite Well

We want to solve
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+v(x) \psi=E \psi$
for
$V(x)=\left\{\begin{array}{cc}0 & -a \leq x \leq a \\ V_{0} & |x|>a\end{array}\right.$
Let region $1=-a<x<a$, region $2=<-a$, region $3=<a$.
$\psi_{1}=A_{1} e^{k_{1} x}+B_{1} e^{-k_{1} x}$
$\psi_{2}=A_{2} e^{k_{2} x}+B_{2} e^{-k_{2} x}$
$\psi_{3}=A_{3} e^{k_{3} x}+B_{3} e^{-k_{3} x}$
Replacing into the TISE, we obtain:
$k_{2}^{2}=k_{3}^{2}=\frac{2 m}{\hbar^{2}}\left(V_{o}-E\right)$
$k_{1}^{2}=-\frac{2 m E}{\hbar^{2}}$
If the energy is positive, then:
$k_{1}= \pm i \sqrt{\frac{2 m E}{\hbar^{2}}}= \pm i k$
Conditions for $\psi(x)$:
$\psi_{1}(a)=\psi_{3}(a)$
$\psi_{1}(-a)=\psi_{2}(-a)$
As the jump in the potential is finite, rather than infinite, we must require:
$\frac{d \psi_{1}(a)}{d x}=\frac{d \psi_{3}(a)}{d x}$
$\frac{d \psi_{1}(-a)}{d x}=\frac{d \psi_{2}(-a)}{d x}$
For the bound states $\left(E<V_{0}\right)$;
$k_{3}=k_{2}=\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)}=\rho$ (a real, positive number.)
$\psi_{1}=A_{1} e^{k x}+B_{1} e^{-k x}$
$\psi_{2}=A_{2} e^{\rho x}+B_{2} e^{-\rho x}$
$\psi_{3}=A_{3} e^{\rho x}+B_{3} e^{-\rho x}$
B_{2} must be zero, otherwise that exponential will diverge. The same for A_{3}.
$\psi_{1}=A_{1} \sin k x+B_{1} \cos k x$
$\psi_{2}=A_{2} e^{\rho x}$
$\psi_{3}=B_{3} e^{-\rho x}$
We obtain non-trivial solutions only for certain values of k and ρ. Through a little algebra:

$$
\begin{aligned}
& \tan k a=\frac{\sqrt{\frac{2 m}{\hbar^{2}} V_{0}-k^{2}}}{k} \\
& \tan k a=-\frac{k}{\sqrt{\frac{2 m V_{0}}{\hbar^{2}}-k^{2}}}
\end{aligned}
$$

For the unbound state, $E>V_{0}$.
$k_{2}^{2}=k_{3}^{2}=\frac{2 m}{\hbar^{2}}\binom{V_{0}}{E}$
$k_{2}=k_{3}= \pm i \sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)}= \pm i \sigma$
$k_{1}= \pm i \sqrt{\frac{2 m E}{\hbar^{2}}}= \pm i k$
We are using a stream of particles $e^{i \sigma x}$ of density 1 coming from $-\infty$, going to $+\infty$, and seeing what happens when they arrive at the potential well.
Solutions:
$\psi_{1}=A_{1} \cos k x+b_{1} \sin k x$
$\psi_{2}=e^{i \sigma x}+\operatorname{Re}^{-i \sigma x}$
$\psi_{3}=T e^{i \sigma x}$
Incident beam of density $1\left(e^{i \sigma x}\right)$, with a reflected beam of density $\mathrm{R}\left(\mathrm{Re}^{-i \sigma x}\right)$. Also, a transmitted beam of density $\mathrm{T}\left(T e^{i \sigma x}\right)$.
The extra term in ψ_{2} makes the equation inhomogenous.
Now we have four inhomogeneous equations for R, A_{1}, B_{1} and T_{1}. We then find solutions for any k, and then for any energy.
We obtain:
$R=\frac{i e^{-z i \sigma a}\left(k^{2}-\sigma^{2}\right) \sin (2 k a)}{2 k \sigma \cos (2 k a)-i\left(k^{2}+\sigma^{2}\right) \sin (2 k a)}$
$T=\frac{e^{-2 i \sigma a} 2 k \sigma}{2 k \sigma \cos (2 k a)-i\left(k^{2}-\sigma^{2}\right) \sin (2 k a)}$
$|R|^{2}$ and $|T|^{2}$ are proportional to the ratios of reflected and transmitted flux of particles to the incident flux.

When $E \gg V_{0}$, then $\sigma \sim k$, and $R \rightarrow 0$.
When $E \rightarrow V_{o}$, then $\sigma \rightarrow 0$ and $T \rightarrow 0$.
If $2 k a=n \pi$, then $E=V_{0}+\frac{n^{2} \pi^{2} \hbar^{2}}{8 m a^{2}}$
$R=0, T=1$
This is called transmission resonance.

1.7 Potential Barrier

$$
E>V_{0}
$$

Similar to finite potential well.
$E<V_{0}$
$\psi_{2}=e^{i \sigma z}+\operatorname{Re}^{-i \sigma x}$
$\psi_{1}=A_{1} e^{k_{1} x}+B_{1} e^{-k_{1} x}$
$\psi_{3}=T e^{i \sigma x}$
where $\sigma=\sqrt{\frac{2 m E}{\hbar^{2}}}$
$k_{1}^{2}=\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)$
$k_{1}=\sqrt{\frac{2 m}{\hbar^{2}}(K-E)}=k$
$R=\frac{i e^{-2 i \sigma a}\left(k^{2}+\sigma^{2}\right) \sinh (2 k a)}{2 k \sigma \cosh (2 k a)-i\left(k^{2}-\sigma^{2}\right) \sinh (2 k a)}$
$T=\frac{e^{-2 i a} 2 k \sigma}{2 k \sigma \cosh (2 k a)-i\left(k^{2}-\sigma^{2}\right) \sinh (2 k a)}$
$|T|^{2}=\frac{(2 \sigma k)^{2}}{\left(\sigma^{2}+k^{2}\right) \sinh ^{2}(2 k a)+(2 \sigma k)^{2}}$
(DNLT)
So, as $V_{0} \rightarrow \infty$,
$k \rightarrow \infty \rightarrow \sinh 2 k a \rightarrow \infty$. Therefore, $T \rightarrow 0$.
$a \rightarrow \infty \rightarrow \sinh 2 k a \rightarrow \infty$. Therefore $T \rightarrow 0$.
For $2 k a \gg 1,|T|^{2} \approx \frac{16 \sigma^{2} k^{2}}{\left(\sigma^{2}+k^{2}\right)} e^{-4 k a}$.

Example, $V_{0}=2 \mathrm{eV}, 2 a=1$ Angstrom.
(i) Electron $\frac{1}{k} \approx \frac{1.96}{\sqrt{V_{0}-E}} A \cdot|T|^{2} \approx 0.78$
(ii) Proton $\frac{1}{k} \approx \frac{1.96 A}{\sqrt{1890\left(V_{0}-E\right)}},|T|^{2} \approx 4 \times 10^{-19}$.
... much more likely to find an electron.

