Cycles

Carnot Engine

1) Isothermal compression at $T_{c}=T_{1}=T_{2}$
2) Adiabatic compression
3) Isothermal expansion at $T_{H}=T_{3}=T_{4}$
4) Adiabatic expansion

$$
\begin{aligned}
& \eta_{\text {carrot }}=1-\frac{T_{C}}{T_{H}} \\
& \frac{Q_{H}}{T_{H}}=\frac{Q_{C}}{T_{C}}
\end{aligned}
$$

Otto Cycle: $\eta=1-\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1}=1-\frac{T_{1}}{T_{2}}$
Heat Engine Efficiency:

$$
\eta_{\text {engine }}^{\text {rev }}=\frac{W_{e}}{Q_{H}}=\frac{Q_{H}-Q_{C}}{Q_{H}}=\frac{\text { what you get }}{\text { what you pay }}
$$

η is always less than 1 .
Pump Efficiency: $\eta^{\text {rev }}{ }_{p u m p}=\frac{Q_{H}}{W}=\frac{1}{n^{r e v}{ }_{\text {engine }}}$
This is greater than 1 by definition
Refrigerator Efficiency:

$$
\eta_{\text {fridge }}^{r e v}=\frac{Q_{C}}{W_{e}}=\frac{Q_{C}}{Q_{H}-Q_{C}}=\frac{\text { what you pay }}{\text { what you get }}
$$

This is usually greater than 1 .

Expansions

Adiabatic:

$$
\begin{aligned}
& P V^{\gamma}=\text { const } \\
& T V^{\gamma-1}=\text { const } \\
& T^{\gamma} P^{(1-\gamma)}=\text { const }
\end{aligned}
$$

Isothermal
Constant temperature:

$$
W=-n r T \int_{V_{1}}^{V_{2}} \frac{d V}{V}
$$

$$
P V=\text { const }
$$

Isothermal Compressability: $\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$

Energies

Energy: $\langle E\rangle=\frac{\partial}{\partial \beta}\left(\frac{F}{k_{B} T}\right)=-\left(\frac{\partial \ln Z}{\partial \beta}\right)_{V, N}$
Internal Energy per molecule/particle:

$$
U=\frac{n}{2} k T=\left\langle E_{k i n}\right\rangle
$$

Helmholtz Free Energy:

$$
F=E-T S
$$

$$
\begin{aligned}
& d F=-S d T-P d V+\mu d N \\
& \langle F\rangle=-k_{B} T \ln Z
\end{aligned}
$$

Gibbs Free Energy:
Specific Gibbs Free Energy when $g=\frac{G}{m}$, where m is the mass:

$$
\begin{aligned}
& G=E-T S+P V \\
& d G=-S d T+V d P+\mu d N
\end{aligned}
$$

Chemical Potential
Can be seen as the Gibbs Free Energy per molecule:

$$
\mu=\left(\frac{\partial E}{\partial N}\right)_{S, V}=\left(\frac{\partial F}{\partial N}\right)_{T, V}=\left(\frac{\partial G}{\partial N}\right)_{P, T}=g
$$

Enthalpy:

$$
\begin{aligned}
& H=E+P V \\
& \begin{aligned}
d H & =d U+P d V+V d P \\
\quad & =d Q+V d P
\end{aligned} \\
& \quad=T d S+V d P \\
& H(T)=H\left(T_{0}\right)+\int_{T_{0}}^{T} C_{p}(T) d T
\end{aligned}
$$

Entropy
If not isothermal, consider the start and end states to obtain ΔS
$\Delta S=\int \frac{d Q}{T}=\int \frac{n c d T}{T}$
$d S=\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V$
$S=k_{B} \ln \Omega$
$S=-\left(\frac{\partial F}{\partial T}\right)_{V, N}$
$\left(\frac{\partial S}{\partial E}\right)_{V}=\frac{1}{T}$
$\left(\frac{\partial S}{\partial V}\right)_{E}=\frac{P}{T}$
Sackur-Tetrode Equation
$S=N x_{B}\left[\ln \left(\frac{V}{N}\right)+\frac{3}{2} \ln T \frac{3}{2} \ln \left(\frac{M k_{B}}{2 \pi \hbar^{2}}\right)+\frac{5}{2}\right]$

Heat Capacities

C is the overall capacity, while c is the specific heat capacity, and is per mole or kg
$c=\frac{t Q^{r e v}}{d T}$
$c_{P}=\left(\frac{\partial Q}{\partial T}\right)_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}$
$c_{v}=\left(\frac{\partial Q}{\partial T}\right)_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{n}{2} R \approx \frac{1}{T^{2}}$
$c_{p}-c_{v}=n R=V T \frac{\alpha^{2}}{\kappa_{T}}>0$
$\frac{c_{p}}{c_{v}}=\gamma=\frac{5}{3}($ monatomic $)=\frac{7}{3}($ diatomic $)$
Low-temperature specific heat:
$c=\gamma T+\varepsilon T^{3 / 2}+\beta T^{3}$
Terms from: electron gas, disturbances in magnetic order, and Debye model
Availability

$$
A=\left(E-T_{o} S+P_{o} V\right) \leq 0
$$

This is maximized in equilibrium Maxwell Relations:

$$
\begin{aligned}
& \left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V} \\
& \left(\frac{\partial S}{\partial V}\right)_{T}=-\left(\frac{\partial P}{\partial T}\right)_{V} \\
& \left(\frac{\partial T}{\partial P}\right)_{S}=-\left(\frac{\partial V}{\partial S}\right)_{P} \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
\end{aligned}
$$

Gases

Clausius-Clapeyron Equation
L is the Latent heat

$$
\begin{aligned}
\frac{d P}{d T} & =\frac{L}{T \Delta V} \\
\frac{d p}{d T} & =\frac{S_{L}-S_{S}}{V_{L}-V_{S}}
\end{aligned}
$$

Conduction: $\kappa=\frac{1}{3} n_{d} c_{v} \bar{v} \lambda$
Density of State: $D(k)=\frac{V k^{2}}{2 \pi^{2}}$
Effusion: $\left(\frac{n_{1}}{n_{2}}\right)_{\text {affer }}=\left(\frac{n_{1}}{n_{2}}\right)_{\text {before }} \underbrace{\sqrt{\frac{m_{2}}{m_{1}}}}_{\text {Enrichment Factor }}$
Gibb's Phase Law: $F=C-P+2$
$F=\#$ of degrees of freedom
$C=\#$ of components
$P=\#$ of phases
Heat flow: $\underline{j}=-k \underline{\nabla} T$
Diffusion equation: $\nabla^{2} T=\frac{1}{D} \frac{\partial T}{\partial t}$

Thermal diffusivity: $D=\frac{k}{C_{p}}$
$D=\frac{1}{2} \bar{v} \lambda$
Ideal Gas Law: $P V=n R T=N k_{B} T$

$$
\begin{aligned}
P & =-\left(\frac{\partial F}{\partial V}\right)_{N, T} \\
Z & =\frac{P V_{m}}{R T}=1 \text { for ideal gas }
\end{aligned}
$$

Ideal Gas Pressure: $P=\frac{1}{3} m n_{d} \overline{v^{2}}=\frac{1}{3} \rho \overline{v^{2}}$
Isobaric Thermal Expansivity: $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$
Mean Free Path: $\lambda=\frac{1}{\sqrt{2} n_{d} \pi d^{2}}$
Quantum Concentration
λ_{T} is the de Broglie wavelength for a
particle with thermal energy $k_{B} T$ and mass
m

$$
\begin{aligned}
& n_{Q}=\frac{1}{\lambda_{T}^{3}} \\
& \lambda_{T}=\frac{h}{\sqrt{2 \pi M k_{B} T}}
\end{aligned}
$$

Speed (Mean): $v_{\text {mean }}=\sqrt{\frac{8 k T}{\pi m}}=\sqrt{\frac{8 R T}{\pi M}}$
Speed (Most probable):

$$
v_{\text {probable }}=\sqrt{\frac{2 k T}{m}}=\sqrt{\frac{2 R T}{M}}
$$

Speed (RMS): $v_{r m s}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 R T}{M}}$
Van der Waal's Law:

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

Lenard-Jones Potential (for Van der Waal's solids):

$$
U(r)=4 \varepsilon\left[\left(\frac{a}{r}\right)^{12}-\left(\frac{a}{r}\right)^{6}\right]
$$

Viscosity: $v=\frac{1}{3} n_{d} m \bar{v} \lambda$
Work: $W=\int \underline{F} \cdot \underline{d x}=\int p d V$
Thermal (volume) expansion coefficient:

$$
\alpha \equiv\left(\frac{d V}{d T}\right)_{p} \frac{1}{V}\left[k^{-1}\right]
$$

Compressibility:

$$
X \equiv-\left(\frac{d V}{d p}\right)_{T} \frac{1}{V}\left[P a^{-1}, b a r^{-1}\right]=\frac{1}{B}
$$

($B=$ bulk modulus)
Tension coefficient: $\beta \equiv\left(\frac{d P}{d T}\right)_{V} \frac{1}{P}$

Fluids

Bernoulli's Equation (conservation of flow along a pipe):

$$
p_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

Poiseuille's equation (flow of fluid in a pipe):

$$
\frac{d V}{d t}=\frac{\pi}{8}\left(\frac{R^{4}}{\eta}\right)\left(\frac{P_{a}-P_{b}}{L}\right)
$$

Stoke's Law (laminar flow):

$$
=6 \pi \eta r v
$$

Solids

Typical equation of state for a solid:

$$
V=V_{0}\left(1+\beta\left(T-T_{0}\right)-\kappa\left(P-P_{0}\right)\right)
$$

Solid State Physics

Number of states:

$$
\begin{gathered}
g(\varepsilon) d \varepsilon=\rho(k) d k \\
g(\varepsilon)=\rho(k) \frac{d k}{d \varepsilon} \\
\text { 2D: } \rho(k)=\frac{A k}{2 \pi^{2}} \\
\text { 3D: } \rho(k)=\frac{V k^{2}}{2 \pi^{2}} \\
k_{B} T=\frac{\hbar^{2} \pi^{2}}{2 M L^{2}}\left(\ell^{2}+m^{2}+n^{2}\right)
\end{gathered}
$$

Single Particle Partition Function:

$$
\zeta=\sum_{\substack{\text { all } \\ \text { states }}} e^{-\frac{\varepsilon(k)}{k_{B} T}}
$$

Grand Single-state partition function:

$$
\zeta_{G}=1+e^{\beta(\mu-\varepsilon)}=\sum_{N_{s}=0}^{\infty} e^{N_{s} \beta(\mu-\varepsilon)}
$$

N particle partition function:

$$
Z=\sum_{\substack{\text { all } \\ \text { microstates }}} e^{-\frac{E}{k_{B} T}}=\frac{\zeta^{N}}{N!}
$$

Grand Canonical Partition Function

$$
Z_{G}=\sum_{N_{s}, S} e^{\beta\left(\mu N_{s}-E_{s}\right)}=\prod_{\substack{\text { all single } \\ \text { particle states }}} \zeta_{G}
$$

$$
\begin{aligned}
& E=\int_{0}^{\infty} \varepsilon f(\varepsilon) g(\varepsilon) d \varepsilon \\
& N=\int_{0}^{\infty} f(\varepsilon) g(\varepsilon) d \varepsilon
\end{aligned}
$$

Energy:
Particles: $\varepsilon=\frac{k^{2} \hbar^{2}}{2 M}$
Photons: $E=p c=\hbar c k$
Bosons:

$$
f(\varepsilon)=\frac{1}{e^{\frac{\varepsilon-\mu}{k_{B} T}}-1}
$$

Fermions:

$$
f(\varepsilon)=\frac{1}{e^{\frac{\varepsilon-\mu}{k_{B} T}}+1}
$$

Number of particles (fixed):

$$
N=\sum_{\substack{\text { all } \\ \text { states }}} \frac{1}{e^{\beta(\varepsilon-\mu)} \pm 1}
$$

Fermi wavenumber (etc):

$$
\begin{gathered}
k_{f}=\left(3 \pi^{2} \frac{N}{V}\right)^{1 / 3} \\
\varepsilon_{f}=\frac{1}{2} M v_{f}^{2} \\
p_{f}=\hbar k_{f} \\
\lambda_{f}=\frac{2 \pi}{k_{f}} \\
T_{f}=\frac{\varepsilon_{f}}{k_{B}} \\
E=\left(n+\frac{1}{2}\right) \hbar \omega
\end{gathered}
$$

Mean number of excited quanta:

$$
\bar{n}=\frac{1}{e^{\beta \hbar v}-1}
$$

Debye frequency

$$
\begin{aligned}
& \omega_{D}=\left(\frac{6 N}{V} \pi^{2}\right)^{1 / 3} \bar{v} \\
& \lambda_{D}=\frac{2 \pi}{k_{D}}=\frac{2 \pi}{\omega_{D}} \bar{v}
\end{aligned}
$$

Laws of Thermodynamics

Zeroth Law:
If two systems are separately in equilibrium with a third system, then they must be in thermal equilibrium with each other.

First Law

$\Delta E=Q+W$
$d E=t Q+t W$
$d E=\left(\frac{\partial E}{\partial T}\right)_{V} d T+\left(\frac{\partial E}{\partial V}\right)_{T} d V$
Q is heat added to the system.
W is work done on the system.
Asides:
Joule's Law: $d Q=c d T$
Work Done: $d W_{\text {rev }}=-P d V$
Stretched string: $d W=\Gamma d l \Gamma=$ tension in string
Stretched surface: $d W=\gamma d A$ where
$\gamma=$ surface tension
$d E=T d S-P d V+\mu d N$
Second Law:
"It is impossible to construct an engine which, operating in a cycle, will produce no other effect than the extraction of heat from a reservoir and the performance of an equivalent amount of work." (KelvinPlanck)
"It is impossible to construct a refrigerator which, operating in a cycle, will produce no other effect than the transfer of heat from a cooler body to a hotter one."
(Clausius)
$\oint \frac{t Q}{T} \geq 0$

Third Law

Absolute Zero, $T=0$, is unobtainable.

Para-Magnets

Energy: $d E=T d S-V M d B$
Work Done

$$
d W_{r e v}=-\mu_{o} V \underline{M} \cdot \underline{d \underline{B}}=-V \underline{M} \cdot \underline{d H}
$$

V is Volume
M is Magnetic Moment per unit volume

Radiation

Planck Distribution: $\bar{E}=\frac{h c}{\lambda}\left[e^{\left(\frac{h c}{\lambda k T}\right)}-1\right]^{-1}$
Planck Distribution Function:

$$
I(\lambda) d \lambda=\frac{2 \pi h c^{2}}{\lambda^{5}\left[e^{\left(\frac{h c}{\lambda k T}\right)}-1\right]} d \lambda
$$

Stefan's Law:
$I=\sigma T^{4}$
$\frac{d Q}{d t}=A e \sigma T^{4}$
Wein's Law: $\lambda_{m} T=2.9 \times 10^{-3} \mathrm{k} \cdot \mathrm{m}$

Statistics

Macrostates

This is the bulk motion of the system, i.e. an overall view. Calculated by averaging over all microstates, e.g.
$\langle x\rangle=\sum_{i} p_{i} X_{i}=\frac{1}{\Omega} \sum_{i} X_{i}$, for an isolated system.
Equilibrium is when the macrostate has the maximum possible number microstates.
Microstates
This is a description of the system at a microscopic level, where the position and momentum (or quantum state) of each particle is specified. Total number $\Omega={ }^{n} C_{r}$.
Average: $\langle Q\rangle=\frac{\int_{-\infty}^{\infty} Q f(Q) d Q}{\int_{-\infty}^{\infty} f(Q) d Q}$
Binomial:

$$
\begin{aligned}
P(r / n ; p) & ={ }^{n} C_{r} p^{r}(1-p)^{(n-r)} \\
& =\frac{n!}{r!(n-r)!} p^{r}(1-p)^{(n-r)}
\end{aligned}
$$

Boltzmann Distribution: $P(E) d E=A e^{-\frac{E}{k T}} d E$ Gaussian Distribution:

Generally: $p(x)=\frac{1}{\sqrt{2} \pi \sigma} e^{-\left(\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right)}$
For gases:

$$
\begin{aligned}
f(v) & =\frac{4}{\sqrt{\pi}}\left(\frac{m}{2 k_{B} T}\right)^{3 / 2} v^{2} e^{-\frac{m v^{2}}{2 k_{B} T}} \\
& =\frac{4}{\sqrt{\pi}}\left(\frac{M}{2 R T}\right)^{3 / 2} v^{2} e^{-\frac{M v^{2}}{2 R T}}
\end{aligned}
$$

Gibbs Distribution

$$
P_{i}=\frac{e^{-\left(\varepsilon_{i}-\mu N_{i}\right) \beta}}{\mathbb{Z}}
$$

This is the same as the Boltzmann distribution, except it includes the number of particles.

Grand Potential:

$$
\Phi_{G}=F-\mu N=-k T \ln \mathbb{Z}=-P V
$$

Mean:

$$
\begin{aligned}
& \bar{x}=\frac{1}{N} \sum x_{i}=\int_{-\infty}^{\infty} x P(x) d x \\
& \overline{x^{2}}=\int_{-\infty}^{\infty} x^{2} P(x) d x
\end{aligned}
$$

Normalisation: $\int_{-\infty}^{\infty} P(x) d x=1$
Partition Function
$g(\varepsilon)$ is the degeneracy of that energy
$Z_{N, \text { dist }}$ is the total partition function for distinguishable particles, while $Z_{N, \text { indist }}$ is
for indistinguishable particles.

$$
\begin{aligned}
& Z=\sum_{\varepsilon} g(\varepsilon) e^{-\varepsilon \beta} \\
& Z_{1}=V n_{Q} \\
& Z_{N, \text { dist }}=\left(Z_{1}\right)^{N} \\
& Z_{N, \text { indist }}=\frac{\left(Z_{1}\right)^{N}}{N!}
\end{aligned}
$$

Grand Partition Function:
$\mathbb{Z}=\sum_{i} e^{-\left(\varepsilon_{i}-\mu N\right) \beta}$
Poisson Distribution: $p(r ; \lambda)=\frac{\lambda^{r} e^{-\lambda}}{r!}$
Scale Height: $\frac{\rho\left(z+z_{o}\right)}{\rho(z)}=e^{-1}$
Standard Deviation: $\sigma^{2}=\overline{x^{2}}-\bar{x}^{2}$
Sterling's Approximation: $\ln N!=N \ln N-N$

Temperatures

Centigrade System:

$$
T_{\text {cenitigrade }}=\lim _{p \rightarrow 0} \frac{P V}{(P V)_{\text {triple point }}} \times 273.16 \mathrm{k}
$$

