Equations — Thermal Physics

Cycles

Carnot Engine
1) Isothermal compression at 7, =7, =T,
2) Adiabatic compression
3) Isothermal expansion at 7, =T, =T,
4) Adiabatic expansion

T,
ncamot = 1 - _C
TH
9, _0
TH TC
v, T
Otto Cycle: n=1-| % | =1--
v, T,
Heat Engine Efficiency:
nrev _ & _ QH - QC _ What yOLt get
0y Oy what you pay
n is always less than 1.
Ou 1

Pump Efficiency: 0, W: e
This is greater than 1 by definition

Refrigerator Efficiency:
_9 _ O
N pidge =%, = -

W, Q,—-0, whatyouget

This is usually greater than 1.

engine

_ what you pay

Expansions
Adiabatic:
PV = const
TV" ™" = const
TP = const
Isothermal
Constant temperature:

v, dV
W = —anJ
PV = const

1
Isothermal Compressability: k, = ——(a—v)

P ),

Energies

e - B )22

Internal Energy per molecule/particle:

U= ng =(E,,)

Helmholtz Free Energy:
F=E-TS

dF =-SdT — PdV + udN
(F)y=—k,TInZ
Gibbs Free Energy:

G
Specific Gibbs Free Energy when g =—,
m

where m is the mass:
G=E-TS+PV
dG =-S8dT +VdP + udN
Chemical Potential
Can be seen as the Gibbs Free Energy per
molecule:

15,3, 43).-
H=ov ), v ), ), 8

Enthalpy:
H=E+PV
dH =dU + PdV +VdP

= dQ +VdP
= TdS + VdP
H(T)=H(T,)+ f: C (T)dr
Entropy

If not isothermal, consider the start and end
states to obtain AS

AS = J' doQ J' nedT

oS oS
ds = dT dv
(aT ] +(av]

S=k,InQ

oF
S=—| —
(5)..

(3_3) 1
OE), T
P

Sackur-Tetrode Equation
3 3. ( Mk 5
S = Nx, ln(zj+—lnT—ln( 32)+—
N) 2 2 \2rmh 2

Heat Capacities
C is the overall capacity, while c is the
specific heat capacity, and is per mole or
kg
erev
dT
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KT

S Y= E(monatomic) = %(diatomic)

C

v

Low-temperature specific heat:

c=yT + €T + BT*

Terms from: electron gas, disturbances in

magnetic order, and Debye model
Availability

A=(E-T,S+PV)<0

This 1s maximized in equilibrium
Maxwell Relations:

T\ (0P
), ~(%),
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Gases

Clausius-Clapeyron Equation
L is the Latent heat

aP L

dT ~ TAV
dp _ S, —S;
dar Vv, -V,

1 —
Conduction: k = 3 vA

Vk*
2

. n n m
Effusion: (—'J = (—'J —=
n2 after n2 before ml

Enrichment Factor
Gibb’s Phase Law: F=C—-P+2
F =# of degrees of freedom
C =# of components
P =# of phases
Heat flow: j=—-kVT

Density of State: D(k)=

10T
Diffusion equation: V*T = 1ar
D ot

k
Thermal diffusivity: D = C_

p

1-
D=—vA
2
Ideal Gas Law: PV =nRT = Nk, T
(%)
AN
Z= PY, =1 for ideal gas
RT
P S_1 =
Ideal Gas Pressure: P = gmndv = gpv

. 1oV
Isobaric Thermal Expansivity: o = —(—j
V\adT ),
1
Mean Free Path: A = ——
V2n d’
Quantum Concentration
A, is the de Broglie wavelength for a

particle with thermal energy k,T and mass

h

b= kT

/SkT /SRT
Speed (Mean): v, = [— =,[——
m M

Speed (Most probable):

2kT 2RT
vprobable = 7 = 7
3kT 3RT
Speed (RMS): v = ‘/— = ‘f—
m M

Van der Waal’s Law:
2
(P + %J(V —nb)=nRT
\%

Lenard-Jones Potential (for Van der Waal’s
solids):

o= (2] (2]

. I -
Viscosity: v = gndmvl

Work: W = [F-dx = [ pav

Thermal (volume) expansion coefficient:

e
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Compressibility:
1 1
= — d_V - I:Pa_l,bar_ljz—
dp ),V B
( B =bulk modulus)
Tension coefficient: 8 = (d—P) l
dr ), P

Fluids
Bernoulli’s Equation (conservation of flow
along a pipe):

1 1
py+pgh + Epvlz =Py +pgh, + Epvzz
Poiseuille’s equation (flow of fluid in a pipe):

@ _x(E)EA)
dt 8\ n L
Stoke’s Law (laminar flow):

= 6mnrv

Solids
Typical equation of state for a solid:

v=V,(1+B(T-T,)-x(P-R))

Solid State Physics
Number of states:
g(&)de = p(k)dk

s(e)=p(b)

de
Ak
2D: plk)=
p(k) =
Vk*
3D: p(k)=
p(k) =
2.2
k,T = h7 (E2+m2+n2)

2Mr’
Single Particle Partition Function:
(k)

78
C: 2 e kT

all k
states

Grand Single-state partition function:

oo

Co=1+ Pl — z esPu-e)

N.\' :0

N particle partition function:

_E é'N
Z= e ol =2
2 M=

microstates

Grand Canonical Partition Function

Zg= %eﬂ(#NVE,V) = H G

all single
particle states

E= [ ef(e)s(e)de

N= J:f(e)g(e)de
Energy:
k*n?

Particles: € =

Photons: E = pc = hck

Bosons:
1
f(S) = e—p
ekTT -1
Fermions:
1
fe)=—
ehT +1

Number of particles (fixed):

1
N = _
; eﬁ(ffﬂ) +1

states

Fermi wavenumber (etc):
L
NV
k, = (37[2 —j
Vv

1

£, =—Mv’
"
p; = hk;
2r
Ap=—
k
E.
T,=-1L
. B
1
E= (n + —jh(o
2
Mean number of excited quanta:
_ 1
"= P —1
Debye frequency
( 6N ]% _
0,=|—nx v
Vv
2t 2m _
Ap=—=—V
kD wD

Laws of Thermodynamics

Zeroth Law:
If two systems are separately in
equilibrium with a third system, then they
must be in thermal equilibrium with each
other.
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First Law
AE=0+W
dE =dQ +dW
dE - (an JT + (BE] av
o ), v ),

O is heat added to the system.

W is work done on the system.
Asides:
Joule’s Law: dQ = cdT

Work Done: dW.__ =—-PdV

Stretched string: dW =T'dl T" =tension in
string
Stretched surface: dW = ydA where

¥ =surface tension
dE =TdS — PdV + udN

Second Law:
“It is impossible to construct an engine
which, operating in a cycle, will produce
no other effect than the extraction of heat
from a reservoir and the performance of an
equivalent amount of work.” (Kelvin-
Planck)
“It is impossible to construct a refrigerator
which, operating in a cycle, will produce
no other effect than the transfer of heat
from a cooler body to a hotter one.”
(Clausius)

2

Third Law
Absolute Zero, T =0, is unobtainable.

Para-Magnets
Energy: dE =TdS — VMdB
Work Done
aw,,, =-uVM -dB=-VM -dH

V is Volume
M is Magnetic Moment per unit volume

Radiation
he

-1
Planck Distribution: E = %{e(wj — 1}

Planck Distribution Function:

2
1(A)dr=—2T" i

A {eu”) - 1}

Stefan’s Law:

I=0T"

d

—Q = AeoT"*
dt

Wein’s Law: A, T =2.9x10"k-m

Statistics

Macrostates
This is the bulk motion of the system, i.e.
an overall view. Calculated by averaging
over all microstates, e.g.

=Y pX = éZXi , for an isolated

system.

Equilibrium is when the macrostate has the

maximum possible number microstates.
Microstates

This is a description of the system at a

microscopic level, where the position and

momentum (or quantum state) of each

particle is specified. Total number

Q="C,.

r

JQf 0)dQ

| 1
Binomial:
P(%ip)="Cp (1= p)""

n! ; (n-r)
- (1=
r!(n—r)!p ( p)
E

Boltzmann Distribution: P(E )a’E = Ae M dE
Gaussian Distribution:
e
207
For gases:

4 m nom

v)= —— Ve 2kl
”’Jﬂ%JJ

3 2

ni(MTﬂg%

Average: (Q) =

Generally: p(x)= \/51 e
no

Jr \2RT
Gibbs Distribution
—(&;—uN;)B
P =
7

This is the same as the Boltzmann
distribution, except it includes the number
of particles.
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Grand Potential:
O, =F—-uN=-kT'nZ=-PV
Mean:

x= %in = JixP(x)dx
X = J:xZP(x)dx

Normalisation: r P(x)dx=1

—oco

Partition Function
g (&) is the degeneracy of that energy
Zy 4w 18 the total partition function for
distinguishable particles, while Z,, is

indist

for indistinguishable particles.
7= Zg(g) e_gﬂ

Z,=Vn,

ZN,indist N ‘
Grand Partition Function:
Z — Zef(si*/v’N),B

r —A
Poisson Distribution: p(r;1) = A e'
r.
Scale Height: M =e!
p(2)

Standard Deviation: ¢ = x* — x>
Sterling’s Approximation: InN!=NInN - N

Temperatures
Centigrade System:

lim PV

T . = x 273.16k
centigrade p BN O (PV)

triple point



