Circuits

Current: $I=\frac{d q}{d t}=n q v_{d} \ell=\frac{P}{V}=\int_{A} \underline{j} \cdot d \underline{A}$
AC current: $I=I_{0} e^{i(\omega t+\phi)}$
Current density: $J=n q v_{d}=\frac{I}{A}$
Electron gun equation: $\frac{1}{2} m v^{2}=e V$
Ohm's Law: $V=I R=\frac{i \rho \ell}{A}$,

$$
\begin{aligned}
& j=\sigma E V_{0} e^{i \omega t}=I_{0} e^{i(\omega t+\phi)} Z, \\
& \sigma=\text { conductivity }
\end{aligned}
$$

Power: $P=\frac{d U}{d t}=V I=I^{2} R$
Charge: $Q=\int I d t$
Complex impedance of a resistor: $Z_{R}=R$
AC voltage: $V=V_{0} e^{i w t}, V_{\text {act }}=\operatorname{Re}\{V\}$
Complex impedance: $Z=\frac{V_{0}}{I_{0}}=\frac{1}{\omega C}=\left|\frac{1}{j \omega C}\right|$
Impedance in series: $Z_{T}=Z_{1}+Z_{2}$
Impedance in parallel:

$$
\frac{1}{Z_{T}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}, Z_{T}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Natural frequency of a circuit: $\omega_{o}=\frac{1}{\sqrt{L C}}$
Quality factor: $Q=\frac{\omega_{0}}{\gamma}, \gamma=\frac{R}{L}$

Capacitance

Capacitance (Parallel plates): $C=\frac{Q}{V}=\varepsilon_{0} \frac{A}{d}$
Combining in series: $\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
Combining in parallel: $C_{e q}=C_{1}+C_{2}$
Displacement current: $I_{D}=\frac{d q}{d t}=\varepsilon_{o} \frac{d \Phi_{E}}{d t}=i_{C}$
Displacement current density: $J_{D}=\frac{I_{D}}{A}=\varepsilon_{o} \frac{d E}{d t}$
Potential Energy: $E_{P}=\int V d q=\frac{1}{2} C V^{2}$
Energy density: $u=\frac{U}{\text { volume }}=q \mathrm{~V}$
Dielectric: $C=\varepsilon C_{0}$
ε is the dielectric constant, or relative permeability.
C_{0} is the capacitance in a vacuum.

Inductance

Mutual inductance:

$$
\begin{aligned}
& \varepsilon=-N \frac{d \Phi_{B}}{d t}=-M \frac{d I}{d t}=N A \cos \phi \frac{d B}{d t}, \\
& M=\frac{\Phi_{B 2}}{I_{1}}=\frac{\Phi_{B 1}}{I_{2}}
\end{aligned}
$$

Self inductance: $\varepsilon=-\frac{d \Phi_{B}}{d t}=-L \frac{d I}{d t}$,

$$
L=\frac{\text { total flux }}{\text { current }}=\frac{N \Phi_{B}}{I}
$$

Voltage: $V=L \frac{d I}{d t}$
Energy: $E=\frac{1}{2} L I^{2}$
Width of power resonance curve: $\gamma=\frac{R}{L}$
Complex resistance: $Z_{L}=i \omega L$
Inductance with magnetic material: $L_{m}=\mu L_{0}$

Kirchoff's Law:

The sum of all voltages around a circuit is 0

Electric

Coulomb's Law: $|F|=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}=\left|E_{1}\right|\left|q_{2}\right|$
Electric field:

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i \neq j} \frac{q_{i}}{r_{i j}^{2}} \hat{r}_{i j}=\frac{F_{2}}{q_{2}}=\frac{\sigma}{\varepsilon_{0}}=-\underline{\nabla} V
$$

Electric potential: $\phi=\underline{E} \cdot \underline{d \ell}$,

$$
V=\frac{U}{q_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{j} \frac{q_{j}}{r_{i}}=-\int \underline{E} \cdot \underline{d l}
$$

Dipole moment: $\underline{p}=q \underline{d}=\alpha \underline{E}$, where α is the atomic polarizability
Polarization (number times dipole moment):

$$
\underline{P}=N \underline{p}=\chi_{E} \varepsilon_{0} \underline{E}, \chi_{E}=\varepsilon-1
$$

Polarization charge per unit volume $\rho=-\underline{\nabla} \cdot \underline{P}$ Energy: $U=-\underline{p} \cdot \underline{E}=\frac{1}{2} \int_{V} \underline{D} \cdot \underline{E} d V$
Electric torque: $\underline{\tau}=\underline{p} \times \underline{E}$
Energy density:

$$
\langle u\rangle=\frac{\varepsilon_{0} \underline{E}^{2}}{2}=\frac{\underline{E} \cdot \underline{D}}{2}=\varepsilon_{0} E_{0}^{2} \cos ^{2}(k z-\omega t)
$$

Potential energy:

$$
d W=-d U=\underline{F} \cdot \underline{d l}=\underline{p} \cdot \underline{E}=\tau d \phi
$$

Potential difference: $\underline{E}=-\nabla \phi$
Electric flux: $\int_{S} \underline{E} \cdot \underline{d s}$
Laplace's Equation (no charge): $\nabla^{2} \phi=0$
Poisson's equation: $\nabla^{2} \phi=-\frac{\rho}{\varepsilon_{0}}$
Induced surface charge: $\sigma_{p}=\underline{P} \cdot \underline{\hat{n}}$
$\rho=\rho_{P}+\rho_{F}$
$\underline{\mathrm{D}}=\varepsilon_{0} \underline{E}+\underline{P}=\varepsilon_{0} \varepsilon \underline{E}$
$\oint_{S} \underline{D} \cdot \underline{d s}=\int_{V} \rho_{F} d V$

Magnetism

Biot-Savart: $B=\left(\frac{\mu_{o}}{4 \pi}\right) \int I \frac{d \ell \times \underline{B}}{r^{2}}$
Dipole moment: $\underline{m}=I \underline{A}$
Energy density: $u=\frac{U}{\text { Volume }}=\frac{B^{2}}{2 \mu_{o}}$
Field energy: $U=\frac{L I^{2}}{2}=\int P d t$
Torque: $\underline{\tau}=\underline{m} \times \underline{B}$
Potential energy: $U=-\underline{m} \cdot \underline{B}=\frac{\underline{B} \cdot \underline{H}}{2}$
$d E= \pm \mu_{B} B$
$\underline{B}=\underline{\nabla} \times \underline{A}$
$\underline{E}=-\frac{\partial \underline{A}}{\partial t}-\nabla \phi$
$\nabla^{2} A=-\mu_{o} \underline{j}$
Potential energy: $U(\theta)=-\underline{m} \cdot \underline{B}$
Magntism; χ_{B} is magnetic susceptibility.

$$
\underline{M}=N \underline{m}=\frac{\chi_{B}}{\mu_{o}} \underline{B} ; \chi_{B}=\frac{\mu_{0} M}{B}
$$

Current per unit length of a cylinder; $M \equiv i_{s}$
Overall Magnetism
\underline{B}_{0} is magnetism in air
(magnetic cylinder inside solenoid):

$$
\underline{B}=\underline{B}_{0}+\mu_{o} \underline{M}
$$

$j_{B}=\nabla \times \underline{M}$
"Magnetic Field" or "Magnetic Intensity":

$$
\begin{aligned}
& \underline{H}=\frac{\underline{B}}{\mu_{0}}-\underline{M} \\
& \oint \underline{H} \cdot \underline{d l}=i_{f} \\
& B=\mu \mu_{0} \underline{H}
\end{aligned}
$$

$$
\begin{aligned}
\mu & =\frac{1}{1-\chi_{B}} \\
& \approx 1 \text { for most materials } \\
& \approx 1000 \text { in magnetic materials. }
\end{aligned}
$$

Diamagnetism:
$\underline{B} \uparrow, v_{e} \downarrow, m \uparrow$
$\underline{m}=-\underline{B} \rightarrow$ field down overall.
Magnitude: $\sim 10^{-5}$
Paramagnetism
Orbital and spin components of the atom don't cancel out. Randomly orientated \rightarrow \underline{B} field applied \rightarrow alignment $\rightarrow \underline{B} \uparrow . \sim 10^{-3}$
Ferromagnetism:
Materials contain "domains" where dipoles are aligned. Applying a magnetic field aligns all the domain's fields. Magnetism remains after B is removed.
$B \uparrow \sim 1000$.
Hysterisis (history dependant)

Lenz's Law

"The direction of any magnetic induction effect is to oppose the cause of the effect"

ElectroMagnetism

Force (plus force on a conductor):

$$
\underline{F}=q(\underline{E}+\underline{v} \times \underline{B})=q \underline{E}+\int I \underline{d \ell} \times \underline{B}
$$

Speed of Light: $c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}=\frac{E}{B}$
Waves in a vacuum (transverse):

$$
\begin{aligned}
& \frac{\partial^{2} E}{\partial z^{2}}=-\frac{\partial^{2} B}{\partial z \partial t}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E}{\partial t^{2}} \\
& \frac{\partial E}{\partial z}=-\frac{\partial B}{\partial t}
\end{aligned}
$$

Electro-: $E=E_{0} \cos (k z-\omega t+\alpha)$
-Magnetism: $B=\frac{B_{0}}{c} \cos (k z-\omega t)$
Relationship between \underline{E} and $\underline{B}: \underline{B}=\frac{1}{c}(\underline{\hat{k}} \times \underline{E})$
$\nabla^{2} \underline{E}=\varepsilon_{0} \mu_{0} \frac{\partial^{2} \underline{E}}{\partial t^{2}}$
Poynting Vector (energy flux per second):

$$
\begin{aligned}
& \underline{N}=\frac{1}{\mu_{0}}(\underline{E} \times \underline{B}), N=c U \Delta A \Delta t, \\
& \langle\underline{N}\rangle=\frac{1}{2 \mu_{0}} \frac{E_{0}^{2}}{c}
\end{aligned}
$$

Radiation pressure:

$$
\begin{aligned}
& P_{\text {absorbed }}=\frac{\varepsilon_{o} E_{o}^{2}}{2}=\frac{N}{c} \\
& P_{\text {reflected }}=\varepsilon_{o} E_{o}^{2}=\frac{2 N}{c}
\end{aligned}
$$

Reflection (perfect conductor):

$$
\begin{aligned}
& \underline{E}_{\text {incident }}=\underline{\hat{x}} E_{o} \cos (k z-\omega t), \\
& \underline{E}_{\text {refecteced }}=-\underline{\hat{x}} E_{o} \cos (k z+\omega t)
\end{aligned}
$$

Linear polarization:

$$
E(z, t)=\hat{x} E_{o x} \cos (k z-\omega t)+\hat{y} E_{o x} \cos (k z-\omega t)
$$

Circular polarization:

$$
E(z, t)=\hat{x} E_{o x} \cos (k z-\omega t)+\hat{y} E_{o x} \sin (k z-\omega t)
$$

Photon momentum: $p=\frac{E}{c}$

$$
E=h f
$$

$$
\frac{F_{B}}{F_{E}}=\varepsilon_{o} \mu_{o} v^{2}=\frac{v^{2}}{c^{2}}
$$

Maxwell Equations

1) Gauss's Law (Electric flux):

$$
\begin{aligned}
& \phi_{E}=\oint_{s} \underline{E} \cdot \underline{d s}=\frac{\sum_{i} q_{i}}{\varepsilon_{o}}=\frac{Q}{\varepsilon_{o}} \\
& \underline{\nabla} \cdot \underline{E}=\frac{\rho}{\varepsilon_{o}} \\
& \underline{\nabla} \cdot \underline{D}=\rho_{F}
\end{aligned}
$$

2) Gauss's Law (Magnetic Flux):

$$
\begin{aligned}
& \phi_{B}=\int \underline{B} \cdot \underline{d A}=B A \cos \phi \\
& \underline{\nabla} \cdot \underline{B}=0
\end{aligned}
$$

3) Ampere's (corrected) law

$$
\begin{aligned}
\oint_{\text {loop }} \underline{B} \cdot \underline{d} \underline{\ell} & =\mu_{o} I_{\text {enclosed }} \\
& =\mu_{o}\left(I_{c}+I_{d}\right) \\
& =\mu_{o}\left(I_{c}+\varepsilon_{o} \frac{d \Phi_{E}}{d t}\right) \\
\underline{\nabla} \times \underline{B}= & \mu_{o} \underline{J}+\frac{1}{c^{2}} \frac{\partial \underline{E}}{\partial t} \\
\underline{\nabla} \times H & =j_{f}+\frac{\partial D}{\partial t}
\end{aligned}
$$

4)

$$
\begin{aligned}
& \int \underline{E} \cdot \underline{d l}=\frac{d \Phi_{B}}{d \ell} \\
& \underline{\nabla} \times \underline{E}=-\frac{\partial \underline{B}}{\partial t}
\end{aligned}
$$

In free space, $\rho=j=0$.

EM in Materials

$\nabla^{2} \underline{B}=\varepsilon \varepsilon_{o} \mu \mu_{o} \frac{\partial^{2} \underline{B}}{\partial t^{2}}$
$\nabla^{2} \underline{E}=\varepsilon \varepsilon_{o} \mu \mu_{o} \frac{\partial^{2} \underline{E}}{\partial t^{2}}$
$\varepsilon \varepsilon_{o} \mu \mu_{o}=\frac{1}{v^{2}}=\frac{\varepsilon \mu}{c^{2}}=\frac{n^{2}}{c^{2}}$
$n=\frac{c}{v}=\frac{c k}{\omega}=\sqrt{\varepsilon \mu}$
$\varepsilon \mu \approx 1$ for most materials
$\nabla \cdot \underline{D}=\rho_{f}$
$\underline{\nabla} \cdot \underline{B}=0$
$\nabla \times \underline{E}=-\frac{\partial \underline{B}}{\partial t}$
$\underline{\nabla} \times \underline{B}=\mu \mu_{o} \varepsilon \varepsilon_{o} \frac{\partial \underline{E}}{\partial t}$
Snell's Law: $\frac{\sin \theta}{\sin \phi}=\frac{c}{v}=n=\sqrt{\varepsilon}$
Incident:

$$
\begin{aligned}
& \underline{E}_{1}=\hat{x} E_{01} e^{i(\omega t-k z)} \\
& \underline{B}_{1}=\hat{y} B_{01} e^{i(\omega t-k z)} \\
& k_{1}=\omega \sqrt{\varepsilon_{o} \mu_{o}}
\end{aligned}
$$

Transmitted:

$$
\begin{aligned}
& \underline{E}_{1}=\hat{x} E_{0 T} e^{i(\omega t-k z)} \\
& \underline{B}_{1}=\hat{y} B_{0 T} e^{i(\omega t-k z)} \\
& k_{1}=\omega \sqrt{\varepsilon \varepsilon_{o} \mu \mu_{o}}
\end{aligned}
$$

Reflected:

$$
\begin{aligned}
& \underline{E}_{1}=\hat{x} E_{0 R} e^{i(\omega t+k z)} \\
& \underline{B}_{1}=-\hat{y} B_{0 R} e^{i(\omega t+k z)}
\end{aligned}
$$

$$
\underline{E}_{I}+\underline{E}_{R}=\underline{E}_{T} \rightarrow E_{0 I}+E_{0 R}=E_{0 T}
$$

(continuous at surface)
$\underline{H}_{I}+\underline{H}_{R}=\underline{H}_{T}$
$\rightarrow \frac{B_{0 I}}{\mu_{o}}-\frac{B_{0 R}}{\mu_{o}}=\frac{B_{0 T}}{\mu \mu_{o}}$
$\rightarrow E_{0 I}-E_{0 R}=E_{0 T}$

Reflection coefficient: $R=\frac{E_{0 R}{ }^{2}}{E_{0 I}{ }^{2}}=\left(\frac{1-n}{1+n}\right)^{2}$
Transmission coefficient:

$$
T=\frac{E_{0 T}{ }^{2} v}{E_{0 I}{ }^{2} c}=\frac{E_{0 T}{ }^{2}}{E_{0 I}{ }^{2}} n=\frac{4 n}{(1+n)^{2}} T=\frac{E_{0 T}{ }^{2} v}{E_{0 I}{ }^{2} c}
$$

EM and conducting media

$\mu_{0} J \gg \mu_{0} \varepsilon_{0} \frac{\partial \underline{E}}{\partial t}$
$\underline{j}=\sigma \underline{E}$
$\frac{\partial^{2} E}{\partial z^{2}}=\mu_{o} \sigma \frac{\partial \underline{E}}{\partial t}$
$E=E_{0} e^{i(k z-\omega t)}$
$k= \pm(1+i) \sqrt{\frac{\mu_{0} \sigma \omega}{2}}=\frac{ \pm(1+i)}{\delta}$
Skin depth
Distance over which amplitude decreases by e

$$
\text { (2.72): } \delta=\sqrt{\frac{2}{\mu_{0} \sigma \omega}}
$$

EM and Plasma

Electron density n_{e}, temperature T_{e}
$\rho=0, j \neq 0$
$\mu_{0} j \approx \varepsilon_{0} \mu_{0} \frac{\partial \underline{E}}{\partial t}$
$F_{e}=m_{e} \ddot{r}=e \underline{E}$ (collisionless)
$j=n e \dot{r}$
$\frac{d j}{d t}=n e \ddot{r}=\frac{n e^{2} E}{m_{e}}$
$\nabla^{2} E=\varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}}+\mu_{0} n_{e} \frac{e^{2} E}{m_{e}}$
$k^{2}=\varepsilon_{0} \mu_{0} \omega^{2}-\frac{\mu_{0} n_{e} e^{2}}{m_{e}}$
Plasma frequency

$$
\omega_{p}=\sqrt{\frac{n_{e} e^{2}}{\varepsilon_{0} m_{e}}}
$$

$\omega<\omega_{p}$, waves are attenuated.
$v_{p}=\frac{\omega}{k}=\frac{c}{\sqrt{1-\frac{\omega_{p}{ }^{2}}{\omega^{2}}}}$
$v_{g}=\frac{d \omega}{d k}=\frac{c}{n+\omega \frac{d n}{d \omega}}$

Refractive index in a plasma:

$$
n=\left(1-\frac{\omega_{p}{ }^{2}}{\omega^{2}}\right) \approx 1-\frac{\omega_{p}{ }^{2}}{2 \omega^{2}}
$$

If the pulse is observed at two different frequencies, then $D n_{e}$ can be measured.

$$
t=\frac{D}{v}=\frac{D n}{c}
$$

Optics

Brewster's Angle: $\tan \theta_{i}=\frac{n_{r}}{n_{i}}$
Lensmaker's Equation: $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
Snell's Law: $n_{1} \sin \theta_{i}=n_{2} \sin \theta_{r}$
Lens Magnification: $\frac{h_{v}}{h_{u}}=\frac{v-f}{f}$
Gravitational Lenses: $\alpha=\frac{4 G M}{b c^{2}}, \theta-\beta=\alpha \frac{D_{l s}}{D_{s}}$
Stoke's Parameters:

$$
\begin{aligned}
& I=\left\langle E_{0 x}{ }^{2}\right\rangle+\left\langle E_{0 y}{ }^{2}\right\rangle \\
& Q=\left\langle E_{0 x}{ }^{2}\right\rangle-\left\langle E_{0 y}{ }^{2}\right\rangle \\
& U=\left\langle 2 E_{0 k} E_{0 y} \cos \varepsilon\right\rangle \\
& V=\left\langle 2 E_{0 x} E_{0 y} \sin \varepsilon\right\rangle
\end{aligned}
$$

Young's Double Slit $d \sin \theta=n \lambda$
Resolution $\theta=\frac{\lambda}{d}$ (due to diffraction)
Refractive index $n=\frac{c}{v}=\frac{c k}{\omega}$

Units

Flux (Weber): $1 \mathrm{~Wb}=1 \mathrm{Tm}^{2}=1 \mathrm{NmA}^{-1}$
Inductance (Henry):

$$
1 H=1 W b A^{-1}=1 V s A^{-1}=1 \Omega s
$$

Magnetism (Gauss): $1 G=10^{-4} T$
Magnetism (Tesla):

$$
1 T=1 N s C^{-1} m^{-1}=1 N A^{-1} m^{-1}
$$

Magnetic Dipole Moment μ :

$$
1 N s^{2} C^{-2}=1 N A^{-2} W b A^{-1} m^{-1}=1 T m A^{-1}=1 H m^{-1}
$$

Volt: $1 V=1 \mathrm{JC}^{-1}$

