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Abstract 
Several methods of detecting microlensing events are compared, including the method used 
by the OGLE-II collaboration and a Least Squares Fitting technique, using a large dataset of 
light curves and Monte Carlo techniques. We find that a modified version of the OGLE 
method is most efficient at detecting microlensing events, with the Least Squares Fitting 
method showing promise for the future. Optical depths between 4.3±1.0( )!10"6  and 

7.2 ±1.3( )!10"6  are found from 10 microlensing events, dependant on the search technique 
used. We also trial the normalization of periodic stars with the aim of detecting microlensing 
events on variable stars, with mixed success. 
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1. Introduction 
Gravitational microlensing is the lensing of the light emitted from a source – either a star or 
another body emitting radiation – by an object with mass in the range of 
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!6
M
!
" m "10

6
M
!

 (Wambsganss 2004), where 
 
M
!

 is the solar mass, which passes 
through the line of sight between the source and Earth. 
 
The odds of a microlensing event occurring to a star within our galaxy at a particular time 
(known as the optical depth) is of the order of a million to one. This means that to have a 
reasonable chance of detecting a microlensing event, millions of stars have to be monitored. 
In the last decade, several groups have done this by regularly imaging crowded star fields 
such as the Galactic Bulge or the Large Magellanic Cloud, creating light curves of individual 
light sources within the star field, and searching through these light curves looking for 
signatures of microlensing events. This has resulted in thousands of microlensing events 
being detected. See section 3 of Wambsganss (2004) for a list and details of observing groups. 
 
In this project, we have used a data set of 174,693 light curves taken by the OGLE-III 
collaboration at 161 times between the 4th August 2001 and the 23rd September 2003. 
Woźniak (2000) provides details of the process used to obtain the light curve data from the 
raw CCD data. 
 
In the following Section, the theory of Gravitational Microlensing will be covered, and the 
equations used to model microlensing events and calculate the optical depth of microlensing 
will be given.  Section 3 discusses the method of fitting this model to a microlensing event. 
Section 4 covers variable stars, and methods to remove the effects of variability. Section 5 
covers the various methods used to identify microlensing events within the data set. Section 6 
gives details of the microlensing events detected in the dataset. Section 7 concludes this 
report, and looks at future directions. 
 
A set of appendices are given at the end of this report, which contain the differentials used in 
the fitting methods (Appendix A), flow charts of the program structure (Appendix B) and a 
discussion of systematic errors (Appendix C). A DVD is also included with this report, which 
contains the data set used as well as graphs for each light curve, the program code and flow 
charts, and digital copies of the data presented in this report. 
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2. Gravitational Microlensing Theory 
2.1 Introduction to Theory 
While microlensing is gravitational lensing on the galactic scale, it differs from cosmological 
gravitational lensing because no existing or planned telescopes can resolve microlensing 
events. This is because the size of the effect of microlensing is of the order of 
milliarcseconds. Instead, only the increase in brightness of a pixel in a detector is generally 
measured. This means that a different set of equations than the normal ones for gravitational 
lensing are used here. 
 
A key advantage to microlensing is that the timescale for the entire event is normally of the 
order 1 – 200 days, compared with around a year for an event in cosmological gravitational 
lensing. This is due to the smaller distances involved with microlensing. 
 
Microlensing events are nearly always symmetrical, as stars and other objects that could 
cause such events are generally spherical. There are exceptions to this; if the object causing 
the lensing consists of multiple bodies (a binary lens, a planet orbiting a star, etc.) then extra 
peaks will occur in the event, and there are also effects such as parallax, which can distort the 
symmetry of the event. We will not be concerned with these effects in this report, however. 
 
In this report, we shall focus on the physical meanings of the equations of microlensing 
theory; derivations are given in the referenced articles. 
 

 
Figure 1: Left, the geometry of the microlensing event as viewed from a position away from Earth (not 
to scale). Right, the magnitude as a function of time (and hence position), schematically to scale with 

the diagram of the geometry. 
 
2.2 Microlensing Equations 
The Einstein radius of a gravitational lens is calculated by (Mao 1999) 
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where M  is the mass of the lens, D
L

 is the distance from the observer to the lens, D
LS

 
is the distance between the lens and the source and D

S
 is the distance between the 

observer and the source (see Figure 1). Note that 
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due to the effects of General Relativity. 
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Figure 2: The microlensing event depicted in Figure 1, as viewed from Earth 

 
If 

 
R

S
 is the distance at which the light ray would have passed the lens position were the lens 

not present (see Figure 1), then the ratio of this to the Einstein radius is given by (Paczyński, 
1996). 
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where 
 
tpeak  is the time at which the light curve is at its peak, 

 
t

E
 is the time for the light curve 

to cross the Einstein radius and 
 
u

min
 is the (dimensionless) minimum impact parameter of the 

interaction compared to 
 
R

E
. 

 
The lens equations for gravitational lensing permit two solutions, one on either side of the 
lens (as depicted in Figures 1 and 2). The total amplification µ  of the star by the lens at time 
t , taking into account both solutions, can be expressed as (Paczyński ,1996) 

 µ =
r
2
+ 2

r r
2
+ 4

. (2.3) 

This can be rearranged via the substitution v = r2 + 2  to give 

 r =
2µ

µ2
!1

! 2 , (2.4) 

which can be used to find the value of r  when only the magnification is known, such as when 
the data of a microlensing event is being studied. Note that r  will always be real, as the cases 
which would lead to an imaginary solution are prohibited – µ2

<1  is excluded as µ  is always 

greater than 1 with microlensing events, and 2µ µ2
!1( )

!1
2 < 2  requires µ2

< µ2
!1  so long 

as only the positive solution to the square root is permitted, which is impossible. 
 
An apparent problem with microlensing events is that they consist solely of amplification, 
with no apparent reduction in the light intensity at any point, which seems to violate the 
conservation of energy. Jaroszyński and Paczyński (1996) point out that a reduction in light 
intensity at other times/observers does happen to the extent required, both through the 
redirection and redshifting of photons, however this decrease is so small at any one 
observation position as to be immeasurable. 
 
To take into account the possibility that an unlensed star is also in the same pixel of the 
detector observing the microlensed star, such that the light curve consists of light from both 
stars, a factor 

 
f
l
 is introduced, where 
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in which 
 
F

l
 is the flux from the lensed star, and 
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 the flux from the unlensed star. The 

actual increase in luminosity measured by the pixel at time t  is then 
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which goes to 
 
µ

B
= µ  when 

 
f
l
= 1 , i.e. there is no unlensed star present. 

 
Finally, the change in apparent magnitude of the star is given by 
 

 
m = m

b
! 2.5 log10 µB

, (2.7) 

where 
 
m

b
 is the unlensed magnitude. 

 

 
Figure 3: 2005-BLG-006, a microlensing event detected by the OGLE collaboration. Measurements of 

the magnitude are given in red, and the best-fit model is given in green. 
 
2.3 Optical Depth 
The optical depth of microlensing is defined as the probability that a star will be undergoing 
microlensing with 

 
u

min
<1  at any one time. It can be estimated by 
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where N
*
 is the number of stars in the data set, T

*
 is the exposure time of the experiment in 

days, 
 
t

E,i  is the number of days the ith microlensed star takes to cross the Einstein radius 
 
R

E
, 

and 
 
! t

E,i( )  is the efficiency of detecting a microlensing event, which depends on 
 
t

E,i  (Alcock 

et al., 2000). The error on the optical depth results from errors in 
 
t

E,i  and 
 
! t

E,i( ) . 
 
3. Least Squares Fitting 

The equations given in the last section can be used to fit a model to the data of a microlensing 
event using a Least Squares Fitting algorithm. In this, a parameter ! 2  can be defined to show 
the ‘goodness’ of fit of the model to the data. The reduced ! 2 , defined by ! 2

/ N
dof

 where the 
number of degrees of freedom 

 
N

dof
 is the number of data points minus the number of fitted 

parameters, should be of order unity for a good fit. 
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! 2  is defined as  
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where 
 
y x

i( )  is the model value of the data calculated at 
 
x

i
, 

 
y

i
 is the actual value of the data 

at x
i
, and 

 
!

i
 is the error on the data at x

i
. 

 
y x

i( )  will be dependent on several parameters in 

the model, so 
 
y x

i( )  can be bought as close as possible to the actual value 
 
y

i
 by altering the 

values of these parameters. This means that by minimizing ! 2  with respect to all the 
parameters at once, we can obtain the ideal model that will fit the dataset. 
 
If a function is known to have a minimum, a common method of finding the position of the 
minimum is to differentiate with respect to the relevant parameter, and then set this equal to 
zero. Rearranging can give the value of the parameter, and hence the minimum value of the 
function can be found. Similarly, the minimum value of ! 2  can be found by differentiating 
the model function with respect to each of its variable parameters, and setting each to zero. 
For N  parameters, this gives N  equations to be solved. 
 
As there is more than one equation to be solved, the method used for this program calculates 
an initial value for ! 2  from estimates of the parameters provided by the user. A procedure is 
then required which will improve the parameters to reduce ! 2  until it can no longer be 
reduced further, i.e. it is at its minimum value. 
 
Far from the minimum ! 2 , a method is used that defines a vector !" 2 , which is the gradient 
of ! 2  in the direction of steepest incline. By changing the parameters in such a way, it is 
possible to head towards the minimum of ! 2 . This means that when this direction is found, 
the values of the parameters are altered with each iteration to calculate a new ! 2 , which 
should continue down in this direction. This is repeated until the minimum is nearly reached. 
This works well when !" 2  is steep, but as the minimum is approached the gradient becomes 
small, so it is harder to find an exact minimum. 
 
This means that as the minimum is approached the program must switch to a new method, 
one that is good for refining the variables to their best possible values. This method 
approximates the minimum value of ! 2  to a parabolic with respect to each parameter, 
assuming that they are already close to their best-fit values. The minimum of these parabolas 
can be found exactly and a matrix can be defined that helps to find the best-fit parameters that 
will (approximately) minimize them all. As this requires very small changes to the variables, 
this function would not work efficiently far from the minimum. 
 
For this project, the GNU Scientific Library is used, which contains all of the exact 
mathematics for this method. The GSL non-linear least squares fitting routines (Galassi et al., 
2005) require the dataset, the model to be fitted to it, the differentials of the model with 
respect to each parameter (see Appendix A.1) and an initial guess for each parameter. It will 
then minimize ! 2  to a user-defined accuracy, and will give out the model parameters for the 
model. This model can then be plotted against the actual data to compare the two. A flow 
chart of the process is given in Appendix B.1. 
 
 
 
 



Classification of Gravitational Microlensing Light Curves 

7 

4. Variable Stars 
Variable stars present a problem to the identification of microlensing events as their 
magnitude routinely increases and decreases with time. These can mimic microlensing events, 
and can only be removed once they have gone through multiple periods. Even when they have 
repeated, they can subsequently hide microlensing events within their periodicy. 
 
The OGLE-II criteria (Woźniak, 2000) were used to identify continuously variable stars 
within the data set.  The number of data points in the light curve that are above and below 
three error bars from the median are counted. If the ratio of these counts lies between 0.5 and 
2.0, then the light curve is classified as a continuous variable; otherwise, it is a transient 
variable. 
 
A simple solution to the problem of variable stars is to simply remove light curves showing 
continuous variability from the data set; however, this may remove some interesting 
microlensing events. If a variable star has large amplitude (i.e. high variability), or the 
microlensing event has a long baseline, then an event could be missed altogether from a 
visual examination. 
 
A more advanced solution is to ‘normalize’ the variable star’s lightcurve, that is, to remove 
the contribution of the variability. This leaves a constant baseline with only transient events – 
such as microlensing events – present. 
 
4.1 Normalization 
To normalize a variable star, a model of its lightcurve has to be fitted. This can be done by 
fitting a sinusoidal curve to the lightcurve using a least squares fitting program, as described 
in Section 3. 
 
The equation used here to model a variable star is 
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where M  is the model magnitude; 
 
A

i
 and 

 
B

i
 are amplitudes of the six components 

i = 1,2, 3( ) ; 
 
m

b
 is the baseline magnitude, t

0  is the phase time (the start time of first sinusoid) 
and P  is the period of the variability of the star. Once the variables are known, this will 
calculate the magnitude of the variable star at time t . Differentials of these equations are 
given in Appendix A.2. An example light curve with the model fitted is shown in Figure 4a; 
the same light curve folded over the period is shown in Figure 4b, and the normalized light 
curve is shown in Figure 4c. 

 
Figure 4a: Star #131246, with periodic model fitted 
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Figure 4b: Star #131264 folded over one period 

 

 
Figure 4c: Star #131264 after the periodic variable model has been subtracted 

 
A good initial guess of the parameters is required. The baseline magnitude can be set as the 
median value of the lightcurve magnitudes. The amplitude A

1
 can be estimated by subtracting 

the baseline magnitude from the maximum value of the magnitude; the other amplitudes can 
be set to zero initially. The estimate of the period is a little harder to find; this will be 
discussed in the next subsection. 
 
Once an accurate model of the variability has been found, it can be subtracted from the data 
(and the baseline magnitude added back on). The light curve can then be treated the same as a 
constant star in the search for transient events. 
 
4.2 Lomb-Scargle Algorithm 
The Lomb-Scargle algorithm was be used to find the period of a variable star, as described in 
Glynn & Mushegian (2004) and Chapter 13.8 of Press et al. (1992). This algorithm involves 
searching through a range of test periods for the data, to find the one that gives the best fit. 
The user defines minimum and maximum periods, and then a number of intermediate periods  
pk  are calculated at equidistant steps, where k = 1,2,...,N . These are then inverted to give 

the frequencies fk . 
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A normalized Spectral Power Density (SPD) is then calculated for each frequency, by 
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where ! 2  is the variance of the magnitude data, m  is the mean magnitude, 
 
t

i
 and 

 
m

i
 are the 

actual lightcurve data, and ! k = 2" fk . The characteristic time !  is defined by 
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The SPD is calculated for each test frequency, and the frequency with the highest SPD is 
taken as the frequency of the data. Inverting this value returns the period. 
 
A balance has to be made between accuracy and time with this algorithm, as the number of 
test periods / frequencies can either be large for high accuracy or small to save time. A 
method of improving the time taken without loosing accuracy is to loop through the algorithm 
several times, taking the frequency range for each loop as the frequencies above and below 
the previous loop’s frequency of best fit. This is repeated until a required accuracy is reached.  
 
For the initial loop, the minimum period has been taken to be 5 days, the maximum period to 
be 500 days, and the number of initial intermediate periods to be 500. Later iterations of the 
process use batches of 50 frequencies, and stop when the period accuracy falls below 0.01 
days. A flow chart of the Lomb-Scargle routine is given in Appendix B.3. 
 
5. Identifying Microlensing Events 
5.1 Search Requirements 
There are a number of effects that prevent the easy identification of microlensing light curves; 
these effects either need to be detected and removed, or specific features of microlensing 
events need to be used to detect events. In practice, a combination of these two solutions is 
used. 
 
Events that can present problems with the identification of microlensing events include: 

- Continuous variables: stars that are constantly varying, such as Cepheid Variables 
(see Section 4). 

- Transient events, such as dwarf novae, which can mimic microlensing events 
- Erroneous data points, caused by (for example) cosmic rays 

 
The microlensing events within the data set detected by each method described below are 
listed in Section 6; the full results from each method can be found on the enclosed DVD. 
 
5.2 Monte Carlo Simulations 
The efficiency of a search routine can be found using Monte Carlo techniques. These consist 
of temporarily inserting microlensing events into the data set using a theoretical model, 
passing them through the search routine, and seeing how many are detected and how many 
are missed. The results of this can be split up into the detection rate of microlensing events 
with different lengths in time, or it can be given in terms of different values of 

 
t

E
 and 

 
u

min
. 

 
Microlensing events can be inserted via two methods. The first, and best, method is to insert 
them directly into the CCD measurements, such that they are run through the subsequent 
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processing of the CCD data before being passed to the identification software. The second 
method is to insert the events into the light curve data, where they are then passed through the 
identification software as per normal. The second method was used here as this project does 
not cover the processing of the CCD data. 
 
The model used to generate the Monte Carlo events is as described in Section 2 The 
parameters 

 
tpeak , 

 
t E  and u

min
 are randomly generated between given limits, using the ran2 

function from Press et al. (1992), and 
 
f
l
 is fixed at 1. The model takes the value of the 

magnitude at the data point being altered as the base magnitude 
 
m

b
, such that the Gaussian 

scatter is preserved as much as possible. 
 

 
Figure 5: Example of a Monte Carlo-generated event. 

 
As this process involves changing the magnitude of the data points, the error also needs to be 
changed appropriately. A table consisting of the average error for each magnitude bin and 
observation time has been generated for this purpose; when a Monte Carlo event is created, 
the average error for both the original and new magnitudes of the data point is looked up in 
this table, and the ratio of these is used to scale the error on the original magnitude. This 
automatically takes into account effects such as ‘seeing’ at the observation time, where such 
effects as atmospheric turbulence affect the measurements of magnitudes, or particularly 
good/bad errors on a specific magnitude measurement. 
 
Monte Carlo techniques have an important connection with the optical depth, as they allow 
the calculation of the efficiency of detecting a microlensing event at a specific value of u

min
 

and/or t
E

. This means that the number of microlensing events that were detected can be 
scaled up to account for those that were missed, either in gaps in the data or an inefficient 
searching technique. 
 
5.3 OGLE-II 
The OGLE-II search process has been programmed as described in Woźniak et al. (2001). 
Continuous variable stars are not processed by it. A flow chart showing the entire OGLE 
search criteria is given in Appendix B.2. 
 
The first step of the OGLE search process is to find the window of 50% of the data set that 
has the minimum variance 

 
!

Fbase

from the median within the window 
 
F

base
, which can loop 

around at the end of the data set. This window is then split into blocks of 10 data points, 
which then have their means 

 
F

block,i  and variances 
 
!

Fblock,i
 calculated. OGLE-II requires that no 
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more than 2 of the block means can lie outside 
 
!

Fbase

 of 
 
F

base
 (requirement 1), and that the 

mean of the block variances is less than half of 
 
!

Fbase

 (requirement 2), 

 
 

!
Fbase,i
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N
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. (5.1) 

 
Next, the number of data points within the whole data set that are within 1 sigma from the 
median, N

0!1"
, is counted, as well as the number of data points between 1 and 3 sigma, 

 
N

1-3!
. 

For a Gaussian distribution around the median, which should be the case if the star’s 
luminosity is constant, these should have the relation   
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If they do not, then this is an indication that some variability is occurring. 
 
This ratio is used to define a threshold ! , 
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In the program described in this report, the last term has been ignored as the value of 
 
! ph  - 

which is the error on the photometry – is unknown. 
 
Finally, events that consist of either 3 consecutive data points above 5! , or 4 consecutive 
data points above 4! , are identified. If there are either 1 or 2 of these events detected where 
the magnitude has decreased (i.e. the star has become brighter), then the star is classed as a 
microlens event candidate (requirement 3). OGLE requires that no events are found where the 
magnitude increases, i.e. the star has become fainter (requirement 4). 
 
Testing this search routine on a total of 1,746,930 light curves with Monte Carlo microlensing 
events generated on them, with t

E
 between 1 and 200 days, u

min
 between 0.01 and 1.0 and 

 
f
l
= 1.0  gives an overall detection efficiency of 0.05 with 98,905 microlensing events 

detected. The majority of the events lost (926,727 events) were due to requirement 1, with no 
candidate events being found in 541,887 light curves. Figure 6 shows the detection efficiency 
as a function of 

 
t

E
; Figure 7 shows it in terms of both 

 
t

E
 and 

 
u

min
. 

 

 
Figure 6; detection efficiency vs. 

 
t

E
 for the OGLE search routine. 
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Figure 7; detection efficiency (z-axis) vs. u

min
 and  

 
t

E
 for the OGLE search routine. 

 
The OGLE search process detected 100 candidate events within the data set, of which 8 are 
potential microlensing events (see Section 6). This gives an optical depth of 5.7 ±1.5( )!10"6 . 
 
As the majority of events were dismissed by requirement 1, the Monte Carlo process was 
rerun with the window length reduced to 15%. With this configuration, the detection 
efficiency rose to 0.34 with 596,791 events detected. No events were removed by requirement 
1, while the number of light curves with no event detected within them rose to 920,721. 
Figure 8 shows the detection efficiency against 

 
t

E
, while Figure 9 shows it against both 

 
t

E
 

and u
min

. 
 
The modified OGLE routine has the advantage that it detects a lot more of the events, 
however due to the reduction of requirement 2 it is likely that it will give more false-positives 
for light curves which do not contain microlensing events when it is run on the actual data set. 
 
When run on the data set, 329 candidates were returned, of which 9 are potential microlensing 
events (see Section 6). This gives an optical depth of 4.3±1.0( )!10"6 . 
 

 
Figure 8; detection efficiency vs. t

E
 for the modified OGLE search routine. 
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Figure 9; detection efficiency (z-axis) vs. u

min
 and t

E
 for the modified OGLE search routine. 

 
5.4 Detection through Least Squares Fitting 
An alternative method of finding microlensing events within a data set is to do a Least 
Squares Fit for the microlensing model on each light curve within the data set, and then 
requiring a reasonable value of ! 2 , and the fit parameters. The values of the limits on the fit 
parameters used here are given in Table 1. 
 

Variable Minimum Maximum Max. error 
! 2  (Global) - 20 - 

! 2  (Local) - 10 - 

 
t

E
 1 200 ±10  

 
u

min
 0.01 2.0 ±1.0  

 
f
l
 - 2.0 ±1.0  

Table 1: Limits on the parameters for the identification of candidates through Least Squares Fitting 
 
For this search method, Monte Carlo returns an overall efficiency of 0.11 with 98,474 of 
873,465 Monte Carlo events being detected. Figure 10 shows the efficiency vs. t

E
; Figure 11 

shows the efficiency vs. t
E

 and u
min

.  
 

 
Figure 10; detection efficiency vs. t

E
 for the Least Squares Fitting search routine. 
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Figure 11; detection efficiency (z-axis) vs. u

min
 and t

E
 for the Least Squares Fitting search routine. 

 
When run on the data set, 33 candidates were returned, of which 7 are potential microlensing 
events (see Section 6). This gives an optical depth of 6.9 ±1.4( )!10"6 . 
 
A major disadvantage for this method is its’ speed – taking approximately 10 times as long 
per star as the OGLE routine. While the processing time per star could be reduced by 
optimizations of the Least Squares Fitting process, this speed decrease will likely remain 
noticeable. 
 
5.5 Minimum number of amplified points 
An alternative method is to look for events that have a set number of data points either side of 
the peak that are lower in magnitude than the previous data point, but above the median. That 
is, a slope falling from the minimum magnitude on either side is looked for. As with the 
OGLE mechanism, this search method should not be used on continuously varying light 
curves. 
 
When run on 1,746,930 Monte Carlo-generated light curves, with the number of points 
required set to 4, 159,337 events were detected with an overall efficiency of 0.09. Figure 12 
shows the efficiency vs. t

E
; Figure 13 shows the efficiency vs. t

E
 and u

min
. 

 

 
Figure 12; detection efficiency vs. t

E
 for the minimum number of amplified points search routine. 
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Figure 13; detection efficiency (z-axis) vs. u

min
 and  t

E
 for the minimum number of amplified points 

search routine. 
 
When this method was applied to the data set with the number of points either side of the 
peak set to 4 (meaning, 9 points total above the median), 35 candidates were flagged, with 6 
being microlensing events (see Section 6). This gives an optical depth of 7.2 ±1.3( )!10"6 . 
 
6. Microlensing Events 
Table 3 gives a complete list of the potential microlensing events that have been detected in 
the data set, with Table 2 acting as the key for the Detection Methods column. Graphs of the 
light curves for each microlensing event are also given. The raw data for each microlensing 
event, as well as full-scale graphs and program output, are given in the ‘microlensing events’ 
directory of the enclosed DVD. 
 

ID Detection mechanism Section 
1 OGLE 5.3 
2 OGLE modified 5.3 
3 Least Squares Fitting 5.4 
4 Number of amplified points 5.5 

Table 2: IDs for detection mechanisms, for use in Table 3 
 


