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1 Introduction

Production – Propagation – Processing

1.1 Radio Window

Radio waves have a big window for seeing through the atmosphere – from circa λ 10mm
to 10m. Radio astronomy is astronomy done through this window.

The long wavelength end is produced by the Earths ionosphere. Radio waves will not
propagate if their frequency is less than the plasma frequency νp, which is around 10MHz
(30m) in the Earths ionosphere. This boundary does change with time and location (as
the ionosphere does).

The plasma frequency is:

νp =
e

2π

√
ne

ε0me
≈ 9

√
neHz (1)

NB: the Interstellar Medium (ISM) has ne ∼ 3 × 104m−3 → νp ∼ 2kHz, which
defines the absolute boundary.

The short wavelength end is produced by molecules in the atmosphere absorption
lines due to water vapour at 22GHz, oxygen at 60–70GHz, etc., which give ∼ 60dB
attenuation.

1.2 Decibels

Definition of decibels:

10 log10

(
I

I0

)
(2)

gives ratio in db, where I0 is the initial signal strength, and I is the new one. For
example:

100dB = 1010 (3)

3dB = 2 (4)

1.3 Collision Broadening

Absorption lines in the atmosphere arent thin due to collisions occurring in the atmo-
sphere (it’s very dense) – so any excited electrons quickly get knocked back down to
a ground state by colliding atoms. The uncertainty principle kicks in because of the
uncertainty of the energy of the system.

∆E∆t ≥ ~ (5)

∆t is the time the system is in an excited state. In atmosphere, ν ∼ 450ms−1 → mean
free path of ∼ 6× 10−8m → τ ∼ 10−10s

∆E =
~
∆t

(6)
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E = hν, so ∆E = h∆ν

∆ν =
~

h∆t
=

1
2π∆t

(7)

For τ ∼ 10−10s, ∆ν ∼ 1GHz.
Radio astronomy is photon rich – unlike IR and shorter wavelengths, where some of

the error comes from counting the number of photons detected, there are lots of photons
so the related error is very small. This defines the techniques that can be used. IR and
shorter wavelengths have their techniques limited by photon count statistics.

1.4 Hot and Cold Radio Astronomy

Cold:

• Planets

• Neutral Hydrogen

• Molecules

• CMB

Hot:

• Pulsars

• Supernovae

• AGN – Active Galactic Nuclei

• GRBs – Gamma Ray Bursts

1.5 Sensitivity

Minimum strength that can be detected:

∆Smin =
2k

Aeff

Tsys√
Bτ

(8)

where k is Boltzmans constant, Aeff is the effective collecting area of the telescope, Tsys

is a measure of how noisy the system is (in Kelvin), B is the bandwidth available and τ
is the integration time.

1.6 Resolution

Θ ≈ λ

d
(9)

where Θ is in radians, λ is the wavelength and d is a characteristic length. For the Lovell
telescope at λ = 1m, Θ ∼ 1◦.
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1.7 Solid Angles

• Solid angle of sphere is 4π steradians (sr).

• The solid angle of the area subtended by A at radius R is Ω = A
R2 sr.

• 1Sr ≡ 3283 square degrees.

• E.g. the Sun diameter ≈ 0.5◦, subtends a solid angle of 6× 10−5 sr.

2 Fundamentals

2.1 Brightness

Brightness (specific intensity):

• We measure the energy dE per unit area, per unit bandwidth, per steradian, per
unit time.

• For a detector element dA, then dE = IνdAdtdνdΩ

• The brightness Iν has units of Wm−2Hz−1Sr−1.

Sample brightness is a property of the source.
Want to measure Iν(θ, φ), the brightness distribution on the sky.
Flux density Sν of a source is the brightness integrated over the solid angle.

Sν =
∫

n
Iν(Ω)dΩ (10)

which is measured in Wm−2Hz−1. Define 1 Jansky (Jy) = 10−26Wm−2Hz−1.
Energy collected by Lovell telescope in 50 years?

• Lovell telescope is 76m in diameter, with a bandwidth of ∼ 20MHz = 2× 107Hz.

• Flux density at 21cm from Cassiopeia A ≈ 2000Jy.

• Power = 2 × 10−23 × Ae × 2 × 107 = 10−12W . Note: the effective area Ae ≈
0.6Ageometric

• Energy collected = power × time ≈ 1.7× 10−3J

• Typical sensitivity is about 10µJy atm.

2.2 Black Body Radiation

Planck radiation formula:

Iν =
2ν2

c2

hν(
e

hν
kT − 1

)Wm−2Hz−1Sr−1 (11)
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In radio astronomy, nearly always hν << kT . Using this, we can make the approxima-
tion:

Iν =
2ν2

c2

hν

1 + hν
kT − 1

=
2kT

λ2
=

2ν2kT

c2
(12)

This is the Rayleigh-Jeans approximation. In the RJ regime, Iν ∝ T .
We can define a brightness temperature Tb. This is the temperature of a hypothetical

black body that would produce the same brightness as the source at a frequency ν.
For sources which are emitting by virtue of their temperature, i.e. thermal sources,

then the brightness temperature of the source is approximately equal to their physical
temperature. For non-thermal sources, their brightness temperature is not equal to their
thermal temperature, but nevertheless you can still define a brightness temperature for
them.

For a thermal source, the brightness temperature Tb ≈ Tphys the physical tempera-
ture. For a non-thermal source, Tb 6= Tphys.

Example: What is the brightness temperature of the Milky Way at λ = 1m?

Iν ∼ 3× 10−21Wm−2Hz−1Sr (13)

Iν =
2kTb

λ2
→ Tb ≈ 109k (14)

2.3 Nyquist Theorem and Noise Temperature

Due to the random motions of electrons, resistors produce a random fluctuating cur-
rent/voltage. Nyquist showed that the average noise voltage 〈V 2

n 〉 = 4RkT∆ν, where R
is the resistance, T is the temperature of the resistor and ∆ν is the range of frequencies
that the amplifier detects.

If we have a resistor, and want to measure the power we need to use a device with
resistance Rs. For max power transfer we need Rs = R.

P = 〈IV 〉 =
〈V 2

x 〉
R

=
〈V 2

n 〉
4R

(15)

where Vn is the open circuit voltage. Combined with the first equation, this gives

P = kT∆ν (16)

This gives the definition of Noise Temperature for a circuit.

2.4 Radiation Transfer

Look at a part of a medium between the radio receiver and the source, length ds (along
the line of sight). Input brightness is Iν , output is Iν ∼ dIν . The medium can emit and
absorb.

dIν = dIν− + dIν+ (17)

where dIν− is absorption, dIν+ is emission.

dIν− = −κνIνds (18)
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dIν+ = ενds (19)

dIν = (−κνIν + εν)ds (20)

This gives the equation of radiation transfer:

dIν

ds
= εν − κνIν (21)

2.4.1 Special Cases

• Emission only: κν = 0, dIν
ds = εν

→ Iν(s) = Iν(s0) +
∫ s
s0

ενds

• Absorption only: εν = 0, dIν
ds = κνIν

→ Iν(s) = Iν(s0)exp
(
−

∫ s
s0

κν(s)ds
)

• If κν is independent of s:

Iν(s) = Iν(s0)exp (−κν(s− s0))

• Thermodynamic Equilibrium (TE):

Absorption balances emission at all frequencies.
dIν
ds = 0 → Iν = εν

κν

(True thermodynamic equilibrium is a black body a system which absorbs at one
frequency and emits at another is not a thermodynamic equilibrium).

The only thing that Iν depends on is the temperature.

Iν =
εν

κν
=

2hν3

c2

(
1

e(
hν
kT ) − 1

)
(22)

• Local Thermodynamic Equilibrium (LTE):

Locally Iν = εν
κν

2.5 Optical Depth

τν =
∫ s

s0

κν(s)ds (23)

or alternatively,

dτ = −κνds (24)

τ is a measure of how opaque something is. Equation of transfer in terms of optical
depth (for LTE):

− 1
κν

dIν

ds
=

dIν

dτ
= Iν −B(T ) (25)
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where B(T ) is the brightness of the medium given by the Planck function. Integrated
(Rohlfs & Wilson [R & W] p9):

Iν(s) = Iν(s0)e−τ(s) +
∫ τν(s)

0
Bν(T (τ))e−τdτ (26)

Initial signal is attenuated (first term) The medium has a temperature, and the more
the optical depth the more it will look like a black body.

Simplify by assuming an isothermal medium. T (τ) = T (s) = T = const. Equation
becomes Iν = Iν(0)e−τν(s) + Bν(T )(1− e−τν(s)). This can be rewritten as

Iν = Iν(0) + (Bν(T )− I0(0))(1− e−τν(s)) (27)

If Iν(0) > Bν(T ), the cloud appears in absorption.
If Iν(0) < Bν(T ), the cloud appears in emission.
Expressing the equation in terms of brightness temperatures:

Tb = T0(0)e−τν(s) + Tb,cloud

(
1− e−τν(s)

)
(28)

where Tb is the final temperature, T0(0) is the starting temperature, and Tb,cloud is the
temperature of the cloud.

NB: whenever there is absorption, there is emission.
Special cases:

• τ << 1 ”optically thin” → Tb = τTcloud

• τ >> 1 ”optically thick” → Tb = Tcloud

2.6 Atmospheric Emission

The atmosphere attenuates all radio signals. Therefore the atmosphere adds noise to
the signal. The big problem is that the noise is time dependent.

2.7 Studying the CMB

At its best, the optical depth of the atmosphere is ∼ 0.02. Therefore

Tb,atm = 0.02× 270k ≈ 5.5k (29)

(where k denotes Kelvin.) cf. TCMB = 2.7k.
Example: The output of the receiver increases 10k when the antenna is tipped from

the zenith to 30 degrees elevation. What is the atmospheric emission? Assume a flat
earth. a is the distance to the edge of the atmosphere at the zeneth, b is the distance
along the line-of-sight at 30 degrees.

sin 30◦ =
a

b
→ b = 2a (30)

→ get plot of atmospheric emission as a function of elevation.
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2.8 Antenna Relationships

2.8.1 Effective Area Aeff

A source produces a flux density Sν WHz−1m−2. Antenna collects a power Prec.

Aeff =
Prec

Sν
(31)

Sometimes known as the effective aperture, or collecting area.

2.8.2 Aperture efficiency

η =
Aeff

Ageometric
(32)

For parabolic telescopes, η = 50− 80% But efficiency depends on surface accuracy - the
reflecting surfaces of the telescope are never perfect.

2.8.3 Ruze formula

The Ruze formula relates the efficiency to the wavelength and the RMS deviations from
a perfect surface:

ηsurface = e−( 4πε
λ )2

(33)

where ε is the RMS surface error and λ is the wavelength. For example, if ε = λ
20 ,

η = 67% .

2.8.4 Reciprocity

Often easier to understand antennas in terms of transmission than reception. They are
equivalent. Shown by the Reciprocity theorem – R & W p127-129.

2.9 Rayleigh Distance

R > Rrayleigh =
2D2

λ
(34)

where antenna properties do not change with R. Conventionally, Rayleigh is the distance
beyond which the deviations from a plane wave are less than a 16th of a wavelength.
Distance to source is R. Angle between source and telescope edge is θ. Radius of
telescope is D/2.

The radius of the wave front =
√

R2 +
(

D
2

)2. We require

λ

16
= R

√
1 +

(
D

2R

)2

−R ≈ R +
RD2

8R2
−R (35)

→ R =
2D2

λ
(36)

With the Lovell telescope, D = 76m, λ = 21cm → Rayleigh distance = 55km.
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Pmax

Sidelobes

Direction to
transmit

FWHM

2.10 Normalized Power Pattern

The power radiated per steradian in the direction (θ, φ) divided by the peak power per
steradian is:

Pn(θ, φ) =
P (θ, φ)
Pmax

(37)

Full Width to Half Maximum (FWHM).

2.10.1 Main beam solid angle

Ωm =
∫∫

Pn(θ, φ)dΩ (38)

where the integral is over the main beam (integrate until the first minima in the radiation
pattern are reached).

2.10.2 Antenna/beam solid angle

ΩA =
∫∫

Pn(θ, φ)dΩ (39)

where the integral is done over 4π steradians, i.e. including the sidelobes. It represents
the solid angle of an ideal antenna, where all power is concentrated into a single beam
with no sidelobes.

2.10.3 Main Beam Efficiency

εm =
Ωm

ΩA
(40)

NB: not quite the same as the aperture efficiency η, but it is related.
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2.10.4 Directivity (or Gain)

D(θ, φ) =
Pn(θ, φ)

1
4π

∫∫
4π Pn(θ, φ)dΩ

=
4πPn(θ, φ)

ΩA
(41)

Dmax =
4π

ΩA
(42)

Gives the power radiated in the useful direction, as opposed to an isotropic emitter.
Parameters are related:

AeΩA = λ2 (43)

Imagine a resistor R connected to an antenna. Enclose the system in a black body
cavity at temperature T . The antenna looks at the surface of the cavity, also at temper-
ature T . Ae is the effective area and ΩA is the antenna solid angle.

The antenna radiates power into the enclosure, which is absorbed. The black body
radiates and some of the energy will be received. (Only some, as only part of the surface
is viewed by the antenna.) Let the surface subtend an angle ΩA. Assume a bandwidth
∆ν.

RJ law: Iν = 2kT
λ2 ∆ν in Wm−2Hz−1Sr−1. Power collected by the antenna: Ae

kT
λ2 ∆νΩA.

Factor of 2 lost as antennas only generally record one plane of polarization so half the
power. In equilibrium, the antenna radiates as much as it receives. Connected to a match
load R at temperature T . From Nyquist theorem → produces noise power = kT∆ν. In
equilibrium, kT∆ν = Ae

kT
λ2 ∆ν = ΩA. Simplifying, AeΩA = λ2.

3 Noise

3.1 Thermal noise from a resistor - Nyquist

For this resonator, the nth mode has a wavelength given by

nλ

2
= L, or n =

2Lν

c
(44)
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The number of modes dn/dν of bandwidth is dn
dν = 2L

c . From quantum black body
theory, the energy in each mode is hν

e−
hν
kT −1

≈ kT in the RJ regime. Note that there is
1
2kT for each polarization. The average noise power N from each resistor travels a time
t = L

c before reflection. It is stored as an energy ∆W .

∆W = 2Nt = 2N
L

c
= N

dn

dν
(45)

But if there are dn modes in dν, ∆W = kTdn = N dn
dν

N = kTdν (46)

Also known as Johnson noise, after the person who measured it in the laboratory.

3.2 Antenna Temperature and Beam Convolution

What will the output power depend on?

• Ae

• The normalized power pattern Pn(θ′, φ′)

• The brightness of the sky Iν(θ, φ)

The power from per unit bandwidth:

dP =
1
2
AePn(θ′, φ′)Iν(θ, φ)dθdφ (47)

P =
1
2
Ae

∫∫
4π

Pn(θ′, φ′)Iν(θ, φ)dθdφ (48)

where the factor of 1/2 is due to only observing one polarization.
We define the antenna temperature TA by

kTa =
1
2

∫∫
4π

Pn(θ′, φ′)Iν(θ, φ)dθdφ (49)

TA is not the physical temperature of the antenna!

TA =
Ae

2k

∫∫
4π

Pn(θ′, φ′)Iν(θ, φ)dθdφ (50)

Using ΩAAe = λ2,

TA =
λ2

2kΩA

∫∫
4π

Pn(θ′, φ′)Iν(θ, φ)dθdφ =
λ2

2k

∫∫
4π Pn(θ′, φ′)Iν(θ, φ)dθdφ∫∫

4π Pn(θ′, φ′)dθdφ
(51)

Iν(θ, φ) =
2k

λ2
Tb(θ, φ) (52)

Therefore,

TA(θ0, φ0) =

∫∫
4π Pn(θ − θ0, φ− φ0)Iν(θ, φ)dθdφ∫∫

4π Pn(θ, φ)dθdφ
(53)



3 NOISE 14

where θ − θ0, and φ − φ0 have been introduced as to get TA(θ, φ), one must scan the
antenna across the sky. The numerator is the convolution of Tb(θ, φ) with the beam
power pattern.

Sky convoluted with a Beam:
TA = 1

ΩA
Pn > TB, where TA is the antenna temperature, Pn is the beam pattern, >

represents convolution and Tp is the sky temperature.

3.3 Signal detection and noise

Noise from a resistor ”Johnson noise” is ”white” – the noise power is independent of
frequency until hν << kT condition breaks down, i.e. at ν ∼ kT

h . This is represented
on the following diagram by the right-most dashed line.

The noise from a radio receiver should be white – sometimes called Gaussian. The
voltage v has a probability density function

P (v) =
1√
2π

1
σv

exp

(
− v2

2σv

)2

(54)

This has a mean 〈v〉 = 0 and variance 〈v2〉 = σ2
v . The voltage as a function of time is

a stationary random variable. The value at one instant is uncorrelated with that at the
next instant. Plotting v vs. t produces a random scatter around a fixed voltage.

Radio astronomers limit their bands with filters with frequency range ∆ν → the noise
is no longer white. If the band consists of a single frequency, then the noise becomes a
perfect sinosoid, and is therefore predictable.

v(t) ⇔ bandwidth via a fourier transform.

Amplifiers have a gain G = signal out / signal power in. It is often measured in dB.
We specify the amplifier noise in terms of the ”Noise Temperature”, TR, the temperature
that a matched resistor at the amplifier input which would generate the observed noise
power output. The power out = Gk(TA + TR) = GkTsys [WHz−1], where TA is the
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antenna temperature, and Tsys is the system temperature. Both Tsys and ∆ν limit the
detectability of signals.

3.4 Narrow band noise

Filters convert white noise into band-limited noise (Burke & Smith Chapter 3)
Detect the signal (i.e. measure v2(t)) and average it for a time δt. We will only get

independent samples if δt = 1
∆ν the coherent time.

3.5 Minimum Detectable Temperature

In an observing time τ there will be τ∆ν independent samples. In any one sample, we
get a random fluctuation corresponding to Tsys. Hence τ∆ν samples give an uncertainty
in Tsys of

∆T =
Tsys√
τ∆ν

(55)

Note that ∆ν is also called the bandwidth B.

3.6 Antenna Temperature from a Point Source

We showed earlier that the noise power from an antenna is

kTA =
1
2
Aeff

∫∫
Iν(θ, φ)Pn(θ, φ)dθdφ (56)

For a point source,
∫∫

Iν(θ, φ)Pn(θ, φ)dθdφ = Sν . Also, Pn(θ, φ) when we point at the

source, and therefore kTA = 1
2AeffSν . Hence, Sν = 2kTA

Aeff
.

(
2k

Aeff

)
, measured in Jy k−1,

is a useful measure of the performance of a telescope. Usually want small values of
Jy k−1.

For example, 32m telescope, 40% efficiency. Aeff = 0.4π162 = 322m2. Number for
Jy k−1 ≈ 9. For a 100m telescope, typical efficiency, ∼ Jy k−1

Assume B = 10GHz, Tsys. How long an integration to detect a 5mJy source at 5σ?
→ want 1σ = 1mJy = ∆Sν . √

Bτ =
2kTsys

∆SνAeff
(57)

→ τ =
(

2kTsys

∆SνAeff

)2 1
B
≈ 12s (58)
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3.7 Noise from an attenuator

The gain of the attenuator G = α 6 1. α represents the loss in the whole system.
Attenuator also called a transformer. Have the noise source an the attenuator at the
same temperature T .

Noise source produces a power kT (per unit bandwidth). Attenuator reduces noise
source signal by α; αkT of the noise source signal emerges from the attenuator, but
everything is matched and at T , so the total output must be kT . Therefore the attenuator
produces a noise to make up the difference.

PA = kT = αkT + Patt (59)

→ Patt = (1− α)kT (60)

This is a general expression, regardless of the temperature of the noise source – the
source and attenuator need not be at the same T .

Patt = (1− α)kTatt (61)

where Tatt is the actual temperature of the attenuator.
Noise temperature = Tatt(1− α).
Example: Attenuation of 0.1dB between the antenna and the amplifier. Contribution

to Tsys? Tatt = 300k.
α = 10−0.01 = 0.977
Tsys = (1− α)300 = 6.8k
If Tatt = 20k, then Tloss = 0.5k.

3.7.1 Optical depth and attenuation

Attenuator: (1 − α)Tatt. Brightness of absorbing cloud: (1 − E−τ )Tcloud. Expressions
equivalent if α ≡ e−τ .

3.8 Tsys

NB: T1, T2 are the noise temperatures, not the actual temperatures.
Remember Tsystem is the temperature of a matched resistor at the input which will

produce the observed output noise power.
Power from the noise source = kTs

Power out of 1 = G1k(Ts + T1)
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Power out of 2 = kG2(T2+G1(Ts+T1)), which by the definition of Tsys = kTsysG1G2.
Equating,

G1G2Tsys = G2(T2 + G1(Ts + T1)) (62)

or
Tsys = Ts + T1 +

T2

G1
(63)

In general,

Tsys = Ts + T1 +
T2

G1
+

T3

G1G2
(64)

3.9 Measuring Tsys

Tsys = TA + TR

Use hot and cold loads, measure the ratio of the powers available from hot and cold
loads Y .

Y =
TR + Thot

TR + Tcold
(65)

→ TR =
Thot − Y Tcold

Y − 1
(66)

Then measure power when antenna is connected to get TA.

3.10 Example of noise accounting

• 3k from CMB

• 7k ”spill-over” or ”ground radiation” from ground at telescope (6−7k for OCRA).
Worse on prime focus dish than cassegrain.

• ∼ 10k from atmospheric emission
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• 15k from 1st amplifier

• 1k from feed attenuation

• 4k from second stage

• etc.

3.11 Heterodyne receivers

Most receiver systems, especially for spectral line, pulsars and interferometry, have
a mixer or down-converter which changes the frequency of the signal. Why?

• Signal processing is easier

• Attenuation in cables is less at lower frequencies than higher ones.

• Makes it easy to change frequency bands.

How?
The radio astronomy signal is mixed with a ”local oscillator” signal. In general,

a non-linear device will produce harmonics. Mixers exploit this. Square-law mixer,
Iout = aV 2

in.
Feed two sinusoids into a square-law device.

V1 cos ω1t + V2 cos(ω2t + φ) (67)

Iout = a(V1 cos ω1t + V2 cos(ω2t + φ)2 (68)

Use trig identities cos2 θ = 1
2(1− cos 2θ) and 2 cos A cos B = cos(A−B) + cos(A + B).

→ Iout =
a

2
(v2

1+v2
2)+

a

2
v2
1 cos 2ω1t+

a

2
v2
2 cos 2(ω2t+φ)+av1v2 cos(ω1t−ω2t−φ)+av1v2 cos(ω1t+ω2t−φ)

(69)
The first term is the DC term. The fourth term is the difference, and is the important

one.
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The down-converted signal (IF, intermediate frequency):

νIF = |νRF − νLO| (70)

where LO denotes Local Oscillator. For a fixed IF and LO, there are two frequency bands
detected by the system. They are known as Upper Side-band and Lower Side-band.

The x-axis is frequency ν. The dashed line is νLO.
RF filters can be used to exclude the unwanted side-band.
Heterodyning presumes phase information.

3.11.1 Conversion loss

The IF power out over the RF power in is significantly less than 1. This corresponds to
a ”conversion loss”.

What is the system temperature of the following?

• Tsky = 10k

• T1 = 20k, G1 = 100

• T2 = 300k, G2 = 0.1

• T3 = 300k, G3 = 100
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Tsys = Tsky + T1 +
T2

G1
| T3

G1G2
(71)

Tsys = 10 + 20 +
300
100

+
300

0.1× 100
= 63k (72)

Note the 30k from the second amplifier. Hence it would be a good idea to have
additional amplifiers before the mixer, to minimise Tsys.

3.12 Square law detectors

Diodes can be used as both mixers and detectors. It depends on the terms that are kept
after filtering.

Detector converts voltage to power. P ∝ V 2

3.13 Gain stability, 1/f Noise

∆T =
Tsys√
Bτ

(73)

This is the random noise limit on detectability. But gain changes can prevent this
limit being reached.

NB: ∆T
T is often very small. For τ = 1s, ∆ν = 1010Hz → ∆T

T = 10−5.
If the gain fluctuates, one effectively gets ∆T fluctuations.
∆T = ∆G

G Tsys These ∆G
G fluctuations get larger with increasing integration time τ ;

they get bigger with 1
ν where ν = 1

τ . Hence 1
f noise.

1
f noise seems universal.
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3.14 Case Study - CMB

Fluctuations are ∼ 10−5k. Want to measure them with a signal-to-noise ratio of ≈ 10.
Need ∆T ≈ 10−6k.

Tsys = 20k → ∆T
T = 10−6

20 = 5× 10−8.

3.15 Living with 1
f

- Dicke Switch System

Try and continuously measure the gain of the receiver.

PSD gives ∝ (TA − Tload). Want to arrange the sky and the load temperatures so
that they are as close as possible together.

Assume that the gain does not change.
State 1 – voltage ∝ kG(TA + TR)∆ν
State 2 – voltage ∝ kG(Tload + TR)∆ν
PSD Output kG(TA − Tload)∆ν
If there were no switching, ∆T fluctuations ∝ ∆G

G (TA +TR) = ∆G
G Tsys. With switch-

ing, they become ∆G
G (TA − Tload) → an improvement ∆G

G Tsys
G

∆G(TA−Tload) = Tsys

TA−Tload

Need:

• Switch faster than gain fluctuations

• Need TA ≈ Tload

Signal-to-noise penalty. Without switching, ∆T
T = 1√

Bτ
. With switching, τ becomes

half the observing time. Also, each of TA and Tload has a noise error, which inceases the
noise on the difference by

√
2 on one of the quantities. Hence the random noise equation

is
∆Tmin =

2Tsys√
Bτ

(74)

3.15.1 Double Dicke
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This recovers one of the lost
√

2’s. Two horn Double Dickie has advantages:

• 1
f cancellation

• Gains
√

2 over Single Dicke

• But also cancels most atmospheric emission fluctuations.

Cancellation occurs where the beams overlap. This is at heights less than the
Rayleigh Distance 4d2

λ .

3.16 Correlation receiver

The outputs A and B have identical gain fluctuations. Hence the difference 2A− 2B
is free of 1

f . It also cancels the atmospheric fluctuations.
Why correlation receiver?
Mathematically, the action of the second hybrid and differencing is equivalent to

multiplication. At the input of the hybrid, we have
√

G1(VA +VB +VN1) and
√

G2(VA−
VB + VN2). Multiplying them together, we have

√
G1G2(V 2

A − V 2
B + VN2(VA + VB) +

VN2(VA − VB) + VN1VN2). The third, fourth and fifth terms average over time to zero,
leaving the difference between the two powers.

Multiplication also gives the difference between two powers. (See Interferometers
section, later.)

3.16.1 Planck LFI receivers

The aim of Planck is to measure the CMB fluctuations. It uses correlation receivers
(Rx) configuration., which reduces 1

f to f ∼ 1mHz.



4 POLARIZATION 23

4 Polarization

4.1 Astrophysics from Polarization

• Synchrotron emission which is polarized. The PA of polarization is related to the
magnetic field direction.

• Faraday rotation → information about plasma between us and a distant source.

• CMB polarization fluctuations give unique cosmological information.

4.2 Notation

Specify in terms of the E vector of the EM wave. For a monochromatic wave,

Ex = Ex cos(kz − ωt + φ1) (75)

Ey = Ey cos(kz − ωt + φ2) (76)

Ez = 0 (77)

Only interested in phase difference φ = φ1−φ2. At z = 0, we can write Ex = Ex cos(−ωt)
and Ey = Ey cos(−ωt−φ). This means that the position vector will trace out an ellipse
over time.

Special cases:

• Ex = Ey and φ = 0 → linear polarization.

• Ex = Ey and φ = +− π
2 → circular polarization

Right-hand circularly polarized (RHC) wave

4.2.1 Stokes Parameters

Define 4 parameters to specify the polarization state.

S0 = I = E2
x + E2

y (78)

S1 = Q = E2
x − E2

y (79)
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S2 = U = 2ExEy cos φ (80)

S3 = V = −2ExEy sinφ (81)

I is total intensity. Q and U are related to linear polarization, and V is circular.
Special cases:

• Pure RHC, Ex = Ey, φ = −π
2 → I = E2

x + E2
y = 2E2

y , Q = U = 0, V = 2E2
x = I

• Pure linear in x-direction, Ey = 0 → I = E2
x, Q = E2

x = I, U = V = 0

• etc...

For a monochromatic wave, the Stokes parameters are not independent. I2 = Q2 +
U2 + V 2.

Why Stokes? They have dimensions of power, so they are additive for components
making up a broadband signal.

For a broadband signal, we measure:

I = 〈E2
x(t)〉+ 〈E2

y(n)〉 (82)

I = 〈E2
x(t)〉 − 〈E2

y(n)〉 (83)

U = (84)

V = (85)

Now, for broadband signals,

I2 ≥ Q2 + U2 + V 2 (86)

It is possible for 〈Q〉〈U〉〈V 〉 = 0.

Define the degree (or percentage) of linear polarization =
√

Q2+U2

I . The position

angle of the polarization χ = 1
2 tan−1

(
U
Q

)
. The degree of circular polarization = |V |

I .

4.3 Faraday Rotation

The refractive index for RHC and LHC are different in magnetized plasmas.
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Rotation of the plane is ∆θ
2 where ∆θ ∝ λ2NB||dz, where N is the electron density,

B|| is the magnetic field parallel to the direction of propagation, and z is the direction
of propagation.

θ = kλ2

∫ L

0
B||(z)N(z)dz (87)

Rotation measure (RM) defined in radians m−2.

RM = 8.1× 105

∫ L

0
BIINdz (88)

where RM is radians per m2, L and dz is in parsecs, B|| in gauss and N in cm−3

RM is the rotation in radians at λ = 1m.

4.4 Polarization receivers

Measure Ex and Ey and multiply.
ExEy = ExEy cos(−ωt − φ1) cos(−ωt + φ1 − φ) = 1

2ExEy cos(−2ωt + 2φ1 − φ) +
1
2ExEy cos(−φ)

The first of these terms (1
2ExEy cos(−2ωt + 2φ1 − φ)) will average to zero, leaving

us with the second term, which is 1
4U .

〈1
2
ExEy cos(−φ)〉 =

U

4
(89)
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• Output 1 ∝ 〈E2
x〉

• Output 2 ∝ 〈ExEy cos φ〉

• Output 3 ∝ −〈ExEy sinφ〉

• Output 4 ∝ 〈E2
y〉

• I ∝ 1 + 4

• Q ∝ 1− 4

• U ∝ 2

• V ∝ 3

Need to calibrate the gains of each channel accurately.

4.5 Polarization with an Interferometer

Assume that two telescopes are looking at the same source, and that the wavefront they
are measuring is coherent.

Mode
splitter

Ex

Ey

Mode
splitter

Ex'

Ey'

ExEx′ = 〈E2
x〉 (90)

EyEy′ = 〈E2
y〉 (91)

ExEy′ = 〈ExEy′ cos(φ)〉 (92)

etc.
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5 Spectral Line Measurement

Radio spectrum is rich in molecular line emission, especially at high frequencies. Line
widths range from 300kms−1 (AGN) to 0.03kms−1 from galactic masers. Hence want of
the order of ∼ 105 frequency channels.

5.1 Detectability of Spectral Lines

Consider an unresolved line (∆νlim << ∆νresolution). The flux in line
∫

Sνdν (in Wm−2).
The flux is fixed, but the flux density depends on the bandwidth (the number of Hz over
which we measure).

S(ν) ∝ 1
∆νresolution

(93)

Recall that ∆Srms ∝ 1√
∆ντ

. Therefore, ∆Srms
S ∝ ∆νresolution√

∆νresolution
∝
√

∆νresolution.
Therefore the signal-to-noise increases as we decrease the size of our frequency reso-

lution elements. Maximize detectability by matching resolution to width of line.

5.2 Spectral Line receivers

LO

Filter 1 Detector

Filter 2

Filter 3

Δν apart

Narrow band
-> 1 spectral channel

Measure a single channel. The filter has a bandwidth ∆ν. Step the local oscillator
in steps of ∆ν to change the frequency that is being looked at.

...etc t

Add additional filters and detectors to detect multiple spectral lines simultaneously
using a single radio telescope. Called a ”filter bank”. Gets very complex when you’re
wanting to observe many frequencies.
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5.3 Digital Autocorrelation Spectrometer (ACS)

The Fourier Transform (FT) of the convolution of two functions g1, g2 is equal to the
product of their individual FTs G1 and G2.

FT of (g1 convolved with g1) = G1G2.

5.3.1 Autocorrelation

Convolve a function with itself.
g convolved g =

∫ inf
inf g(t)g ∗ (t + τ)dτ = ACF (τ)

The FT of g(t) convolved g(t) = GG∗ = |G(ν)|2 = FT of ACF (τ).
|G(ν)|2 is the power spectrum.
The FT of the ACF is the power spectrum.
i.e.

∫ inf
− inf g(t)g ∗ (t + τ)dτ =

∫ inf
− inf |G(ν)|2ei2πνtdν

Weimer-Kimchin Theorem.

Clock

Signal Digital
sampler Δτ Δτ Δτ Δτ

g(t-Δτ) g(t-2Δτ)

g(t)

ACF

ν=1/(2Δτ)

Each clock, move signal down to next box in register

Memory bank/register

5.3.2 ACS using shift register

Shift register moves the sample down the chain each time it receives a timing pulse. The
register stores a delayed version of the signal. Multiplier outputs give a sample of the
ACF.
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5.3.3 Window Function

Pure monochromatic wave.

δ-function ACF(τ)

nΔτ

FT of solid lineFT of dotted line

Sinc function

How close the spike is to a delta function depends on the number of delays that we
measure. But get sidelobes (sinc function). This becomes a problem if we have two
lines close together, then the sinc functions overlap and things start to get confusing.
By choosing the window fn (weight the ACF [dashed line]) we suppress the sidelobes,
and degrade the resolution. This is normally acceptable. Normally use a cos2 weighting
function.

Advantages:

• Digital, hence stable and compact

• Good dynamic range (no saturation)

• Noise falls as (integration time)−1/2

• Bandwidth can be changed

• Very high resolution is possible

Nowadays this tends to be done in software rather than hardware.

5.4 Shannon Sampling Theorem (Nyquist sampling)

If we have a bandwidth B1 we need only sample at a frequency ν = 2B to obtain full
information about the power spectrum.

e.g. 10MHz bandwidth needs a 20MHz sampling. To sample lines of 10kHz in our
spectrum, how many lags do we require in the ACS? Need a resolution of 5kHz, hence
need 2000 lags.

6 Pulsars and Pulsar Receivers

Need time resolution, and need to deal with dispersion. The ISM delays low frequencies
with respect to high, giving rise to dispersion.
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ν

t

Frequency

Arrival time

Plasmas have a plasma frequency of νp = e
2π

√
ne

ε0me
At frequencies above νp, we

get propagation with dispersion. For frequencies below, we get no propagation, i.e. no
signal.

The group velocity is vg = c

√
1− ω2

p

ω2 .
To maximize pulse detectability, we need to match the sampling time to the intrinsic

pulse width.
Relationship between the flux density S and the frequency ν is typically something

like S ∝ ν−2.

6.1 Example

What is the propagation delay for a pulsar at 1kpc at 100MHz? (Assume ne = 0.03cm−3.)

Since ω
ωp

>> 1, vg ≈ c(1− 1
2

ω2
p

ω2 ).

Travel time =
∫

1
vg

ds ≈ d
c + 1

2cω2

∫
ω2

pds, where the first part is light travel and the sec-

ond part is the propagation delay. Therefore, the delay = 1
2c×4π2(108)2

∫ 1kpc
0

e2

ε0me

√
3× 104ds =

12.5s.
What is the delay for 101MHz? 12.25s. Note that pulse periods range from about

2ms to several seconds. More importantly, the pulse widths and features within the
pulse have a time scale very much less than a quarter of a second. So this is significant.

6.2 Dispersion Measure

Define Dispersion Measure (DM).

DM =
∫

ne

cm−3
d

l
pc

(94)

A pulsar with a given DM has a propagation delay given by

0.83× 104 ×DM× ∆ν

MHz
× 1

ν/MHz

3

s (95)

6.3 Faraday rotation

Pulsar emission is highly polarized. Hence can measure the Faraday rotation. Rotation
Measure (RM) = 0.81

∫
ne

cm−3 B||
dl
pc
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RM

DM
=

0.81
∫

neB||dl∫
nedl

= 0.81〈B||〉 (96)

The 〈 〉 denote B|| weighted by ne.

6.4 Pulsar receivers

LO

Filter
bank

Nowadays digitize the full band as it comes out of the mixer, and do the dispersion
correction in software. Known as Coherent De-dispersion. Essentially a software receiver.
Multiply the digital signal by the inverse of the dispersion transfer function.

7 Bolometers

These are mm and sub-mm devices, which are only suitable for continuum (i.e. broad-
band) applications. They are incoherent receivers, i.e. no amplitude or phase. They are
temperature sensitive resistors.

T

Bolometer

V=IR

Heat sink

hν
Focus of
telescope

A dc bias is applied. Photons are absorbed → the temperature rises ⇒ V changes
and is amplified. The heatsink is present to cool the bolometer down as quickly as
possible once it’s received some energy.

Broadband – good for sensitivity, but not good for spectra. Pick up everything.
Biggest disadvantage is the expense of the cryogenics, as they need to be cooled to mK.
But can build large arrays - currently up to about 100 elements. They are the detector
of choice above around 100GHz.

7.1 Noise Equivalent Power (Flux density)

The NEP is the power that must fall on the detector to raise its output by an amount
equal to the RMS noise.
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If the bolometer noise is dominated by sky background of emissivity ε, the incident
power is PBG = ε2kTBG∆ν, where the factor of 2 comes from the fact that the receiver is
sensitive to both polarizations. Bolometers can be made to detect only one polarization,
though.

The fluctuations give an NEP = ε2kTBG

√
∆ν. (Rohlfs and Wilson pp72, 73).

If we have a source producing Ts in the telescope beam,

S

N
=

2kTs∆ν
√

τ

NEP
(97)

e.g. SCUBA. NEFD = 60mJyHz−1/2. For ∆ν = 60GHz, what is the integration
time to detect 1mJy source with SNR of 5? S

N = 5 =
√

tS
NEFD ⇒ t ≈ 25 hours.

8 Types of Telescope

Paraboloid: dish + feed system. Nearly all are alt/az.

Feed

Support

Prime focus - simple, just one reflecting surface. Difficult to feed, as the feed is not
very far from the dish surface, so power needs to be collected from a wide spread of
angles. Also means that the feed will see some power from over the edge of the dish -
the ground, which can produce a large amount of noise. Lowish maximum efficiency,
less than around 60%.

Cassegrain design:

Focus

Secondary mirror

Advantages:

• Focus is accessible

• Feed looks at the sky

• Less spillover – ground radiation

• Can have up to 80% efficiency
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• Can have a wide field operation

A disadvantage of the Cassegrain is that the feed needs to be quite large – problem
at low frequencies. The feed needs to look at the whole of the secondary focus, so the
diameter needs to be greater or equal to about 6λ (from λ/D).

8.1 Aperture Distributions

Optical ↔ Radio
Single slit ↔ single dish

Young’s double slits ↔ interferometer
Diffraction gratings ↔ Array

The diffraction pattern is the fourier transform of the aperture function.

E

Secondary

Feed

For a radio telescope, the aperture distribution is the [electric] field (both amplitude
and phase) across the front of the dish.

Apply Wiener-Khimelim theorem. If we take the autocorrelation of the aperture
distribution g correlated with g, the W-K theorem tells us that the fourier transform of
this is the power spectrum of g. The power gain is the FT of the autocorrelation
of the aperture distribution.

1 2 3-1-2-3

f(x)Move across and take the parts
where they are overlapping

Area of overlap between the two.

1 2 3-1-2-3

Autocorrelation function
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8.1.1 Single dishes

Resolution is ≈ 1.22 λ
D .

First side lobe is ∼ 20dB down from the peak. However, it covers more area.

Sidelobe

Main beam

If one ”grades” the aperture distribution, one can reduce sidelobes.

Dish

Strength
of signal

8.1.2 Interferometers

f(x) h(x) g(x)

F(K) H(k) G(k)

FT FT FT

Single telescope response Telescope positions

F(K) is the FT of f(x) etc.

The fringe pattern is limited by the size of the individual dishes, while fringe sepa-
ration is determined by the separation of the elements.
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g(x) =
∫∞
∞ f(x)h(x − x′)dx′. Interested in the outside two; the inside one is not of

such interest.

8.2 Antenna Smoothing

The antenna temperature TA is the convolution of the sky brightness Tb(θ, φ) with the
antenna pattern.

TA(θ, φ) =
Ae

λ2
Tb(θ, φ) ∗ Pn(θ, φ) (98)

where * denotes convolution. Using the convolution theorem, the F.T¿ of TA(θ, φ):

t(u, v) =
Ae

λ2
tb(u, v)× c(u, v) (99)

where tb(u, v) is the fourier transform of Tb, and c(u, v) is the FT of Pn. c(u, v) is the
transfer function.

c(u, v) = g(u, v)⊗ g(u, v) (100)

is the autocorrelation of the aperture distribution.
The coordinates u, v are coordinates in the plane of the aperture measured in the

wavelength λ; u = x
λ , v = y

λ .
c(u, v) vanishes outside the aperture distance. Hence the telescope acts like a low

pass filter - it accepts only low frequencies or long wavelength Fourier components.
c(u) = g(u)⊗ g(u). Single dish: This is the filter function. It goes to zero for greater

u

or less than certain values of u and v, hence it has an absolute cutoff in terms of the
fourier components that it accepts.
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Tb

FT

u

(approx)

Aperture Transfer function

u'
u

g(u)

2u'
u

Tb

Implies that values of Fourier components in the sky ≥ |2u′| are rejected.

8.3 Deconvolution

You know the transfer function - it has weighted down high spatial frequencies. Want
to reconstruct a map with a nicer transfer function.

Example: A gaussian source observed with a Gaussian beam. The convolution of
two gaussians is another. θmes is measured. Θs is the source size, and Θb is the beam
size. thetames =

√
Θ2

b + Θ2
s.

If Θb = 10′, θmes = 12′ ⇒ Θs = 6.6′.
NB: to be quantitative, have used a Gaussian prior - i.e. assumed that the source is

gaussian.

8.4 Interferometers

Advantages:

• Angular resolution ∼ λ
D where D is the maximum baseline (¡1mas)

• More stable to 1
f noise - they only measure the correlated noise from both elements.

• Less susceptible to radio frequency interference (FRI), as it is not usually corre-
lated.

• Less affected by atmospheric emission

• Less confused

• Good for astrometry – can measure positions to the resolution λ
D × 10−2.

Disadvantages:

• The transfer function is complex ⇒ must deconvolve the resulting map. (CLEAN
algorithm – well known)

• Poor surface brightness sensitivity
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For an interferometer, the transfer function looks something like:

v

u

8.4.1 Adding interferometer

Take signals, delay, add and detect. Setting VA as the signal from telescope A, etc, the
output ∝ VAei(ωt+φ/2) + VBei(ωt−φ/2) ∝ V 2

A + V 2
B + 2VAVB cos φ. The first and second

terms are the sum of the total power; the third term is the fringes, and is the interesting
part.

VA
2 + VB

2

Output
power

Any gain fluctuations in either A or B will modulate the DC component up or down,
increasing the difficulty of measuring the fringe pattern.

8.4.2 Correlating (Multiplying) Interferometer

Take output from telescopes pointing in different directions. Sample both signals,
A(Tn).B(tn). If A(tn) is positive, B(tn) is just as likely to be positive as negative.

Therefore multiplying A(tn) with B(tn) is just as likely to give a positive as a negative
result. Hence the product will average to zero.

Now point telescopes at the same source. Most output still uncorrelated noise (Ωx+
atmosphere). But now there will be a slight bias; whenever A(tn) is positive there is a
greater chance that B(tn) will be positive too.
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Multiplying A(tn) with B(tn) will result in a non-zero average because they are more
likely to be of the same sign. (1-bit correlation works.)

Qualification: if the correlated parts of A and B are π/2 out of phase, this will not
work. The solution is to multiply twice, once with no phase shit and once with a π/2
phase shift. (often called cosine and sine outputs.)

Also, averaging to detect the correlated signal works only if φ s constant.
Output from telescopes VRA, VRB are incoherent. VA, VB are coherent. Multiply:

Output = GAG∗
B(VAei(ωt+φ/2) + VRA)(VBe−i(ωt−φ/2) + VRB) (101)

= GAG∗
B(VAei(ωt+φ/2)V ∗

Be−i(ωt−φ/2) + VRAV ∗
Be... + VRBVAe... + VRAVRB) (102)

The last 3 terms will average to zero. The integrated output = GAG∗
BVAVBeiφ.

Real part ∝ cos φ, imaginary ∝ sinφ. As φ is changing, resultant output is sinusoidal.
The amplitude of this (the fringe amplitude) is the strength of the correlated part of the
signal.

Real correlators deal with real signals, hence complex multiplication must be done
in two steps.

1. Multiply. ∝ cos φ

2. Phase shift by π/2 and multiply. ∝ sinφ.

Adding gives real + imaginary. Hence we measure VAV ∗
Beiφ = VAV ∗

Beiωτ where
τ = D.bn

c .

8.4.3 Extended sources

The output will be the sum of the correlated signals over the extent of the source.

Output ∝
∫ ∫

Tb(x, y)P (x, y)eiω D.bn
c dxdy (103)

where Tb is the sky brightness, P is the antenna response eiω D.bn
c ≡ eiω(ux+vy).

Therefore the fringe strength (visibility)

V (u, v) ∝
∫ ∫

Tb(x, y)P (x, y)ei2π(ux+vy)dxdy (104)

The complex fringe visibility is the 2D Fourier Transform of the sky brightness dis-
tribution. Can often think of P (x, y) as a constant.

To get Tb, we Fourier Transform the visibility V .
The key is to sample V (u, v) as well as possible → Aperture Synthesis. Either:

• Lots of interferometers

• Observe the sky for hours while the Earth rotates in respect to the sky.
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u

v

ellipse

8.5 Bandwidth and Delay

Signals of non-zero bandwidth B have a coherence length ≈ 1
Bc (c is the speed of light),

or a coherence time of ∼ 1
B . If the delay is out by greater than ∼ 1

B , then coherence is
lost.

The delay changes with θ (direction), so coherence may be lost for extended sources.
The Effective ”delay beamwidth”

θb ≈ θsynth
ν

B
(105)

Limit the field of view. Can solve the delay smearing problem by correlating many
small sub-bands.

8.6 Visibilities and Source Structure

v

(u2+v2)1/2

-> Point source

σ
-> Gaussian of width 1/σ

Gaussian

u
1 / source separation
in the sky

-> 2 equal point sourcesv

v

u
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8.7 Deconvolution

This is necessary because the transfer function (or synthesised beam) of an inteferometer
array is complex

Terminology:

• Dirty map: map produced by FT of gridded visibility data

• Dirty beam: Is the dirty map of a point source. FT of UV coverage.

• CLEAN: deconvolution algorithm.

CLEAN exploits the fact that most of the radio sky is empty. Assumes that the
brightness distribution can be represented by the sum of point sources. Implementation:

• Make dirty map

• Look for brightest point

• Subtract a scaled dirty beam from that point, and record where from and how
much.

• Look for the next brightest source

• Subtract, record

• etc.

• Stop once the residual map is something that looks like noise.

• Take the array of ”clean components” and you convolve these with a ”Clean beam”
- usually a gaussian of width equal to the main lobe of the dirty beam

• Add in the residuals

Advantages:

• Simple to use

• Seems to work

• People trust it

Disadvantages:

• No rigorous theory to underpin the method - empirical.

• Errors are not easy to quantify

• Doesn’t work well on extended sources
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