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1. Basic Formal Concepts 
We have N identical particles of mass m . Internal degrees of freedom and special 
extent are neglected. The position variable of particle i  1 ! i ! N( )  in 3D space is 
r
i
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N( )  is a 3N -dimensional vector 
which holds the position variables of all of the N  particles in 3D space. 
 
NB: We will always use right-handed frames of reference. 
 
The gradient, or Nabla operator, of particle i  is 
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Applied to a function, this will provide a 3D vector 
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The Laplace operator for particle i  is 
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where the dot represents the scalar product. This provides a scalar. 
 
Applied to a function, this is 
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The relative position vector between two particles is 
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which points from r
j
 to r

i
. The distance between these two particles is 
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+ zi ! z j( )
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Every particle i  interacts with every other particle j ! i  via a central pairwise (only 
consider pairs of particles, i.e. 2-body interactions) central potential v rij( ) , which 
depends only on the distance rij  and not on the direction. 
 
A typical 2-body potential v rij( )  is the Lennard-Jones potential 
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where the constants !  and !  depend on the material. This is used for rare gas 
elements He , Ne , Ar , Xe  and H

2
. 

 
The operator V R( )  of the internal potential energy is 

 V R( ) = v r
ij( )
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This is a sum over all distinct pairs of particles, where i ! j  as a particle dos not 
interact with itself. The latter two have factors of a half as they count each interaction 
twice. 
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Example for N = 3 : 
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the same in each case. Hence, 
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Let ! R( ) =! r

1
,r
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N( )  be the many-body wave function that depends on the 
coordinates r

1
,r
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N
 of the N  particles. To act with an operator V R( )  on ! R( )  

means that we multiply ! R( )  with V R( )  to obtain the result V R( )! R( ) . The 
operator of internal potential energy is an operator of multiplication with the total 
potential energy V R( ) . 
 

The operator T̂  of the (non-relativistic) kinetic energy is classically T =
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dimensional linear momentum of particle i . We want to turn this into quantum 
mechanics, i.e. T ! T̂ . Replace 
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2  is the operator of the kinetic energy of particle i . 

 

NB: 
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, where h  is Planck’s constant. 


