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1.5 Flatness and Horizon Problems 
Define 
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(the Friedman equation), and the Raychauduri equation 
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Assume that P = w! , where w  is a constant. We can show that 

 

!! = 1+ 3w( )H! !"1( ) . 
If 1+ 3w > 0  (so far, we have considered w = 0  for matter and w = 1 / 3  for 
radiation), then ! = 1 is a repelling solution. So unless !  is exactly one, the solution 
diverges. This is the Flatness Problem. It is a problem because !  has been measured 
to be very close to 1, even after all this time – why? 
 
In fact, it moves away from ! = 1 very quickly indeed. Since 
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# 1  today, this implies that it must have been extremely close 

to 1 at earlier times (“fine tuning”). 
 
The solution for the equation is 
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Where !
0
 is the value for !  today. 

 
If !

0
= 1+ " , where ! << 1 , then 

! =
1

1"
#

1+ #
a
1+3w

. 

At !eq , where w = 0 , this can be approximated to 
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So !  is closer to 1 at teq   the Flatness Problem. !  must be fine-tuned to be very 
close to 1 at the time of the Big Bang. 
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Now consider the horizon size today compared to the horizon at t = t
rec

. 
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So the region which our current causal horizon comes from contains approximately 
10

5  causally disconnected horizons at t
rec

. However, the CMB has an almost uniform 

temperature over the current horizon, with 
!T

T
" 10

#5 . This is called the Horizon 

Problem. 
 
 
2. Inflation 
2.1 Definition of Inflation 
Inflation is a period of super-luminal expansion at very early times where  !!a > 0  (NB: 
in a !  universe,  !!a > 0  although this happens at late times). 

 
Since 
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then during inflation P < !
1

3
" . This means that the Strong Energy Condition is 

violated. 
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If w = !1 , then we have de Sitter space. 
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If !1 < w < !
1

3
, then we have power-law inflation, and if w = !1  we have 

exponential inflation. 
 
One often quantifies the amount of inflation using the number of e-folds, 
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so eN  is the amount that a  has increased during the inflation epoch. 
 
Flatness Problem 

 
 
Inflation is very small compared to radiation and matter. 
 
In a radiation and matter dominated universe, 
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where the T ’s are temperatures. 
 
In an exponential inflation, 
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Assume T
end

! 10
16
GeV , Teq ! 1eV , T! 0( ) " 10#4

eV . 
!
0
"1

!
0

= 10
54
e
"2N

!
start

"1

!
start

 

If N  is sufficiently large N ! 60( ) , then !
0
" 1 no matter what !

start
 was. 

 
Horizon Problem 
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Particle horizon in a universe which is inflating is infinite. Hence, if the inflationary 
era is sufficiently long, then the entire observable universe can come from a single 
causally connected region. 
 
Other aspects of inflation 
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 matter and radiation are exponentially suppressed if a ! e
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2. 
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Therefore during inflation the comoving Hubble radius is decreasing. 
 
2.2 Potential Formulation & Slow Roll Dynamics 
Consider a scalar field ! x,t( ) , which we will call the Inflaton (particle responsible 
for inflation). The action for this field is 
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i.e. the root of the determinant of the metric. 
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Compute the Euler-Lagrange Equations 
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Switch to conformal time; 
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