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1.5 Flatness and Horizon Problems
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(the Friedman equation), and the Raychauduri equation
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L= (p+3P).
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Assume that P =wp, where w is a constant. We can show that
Q=(1+3w)HQ(Q-1).

If 1+3w>0 (so far, we have considered w=0 for matter and w=1/3 for

radiation), then Q=1 is a repelling solution. So unless €2 is exactly one, the solution

diverges. This is the Flatness Problem. It is a problem because €2 has been measured
to be very close to 1, even after all this time — why?

In fact, it moves away from Q=1 very quickly indeed. Since
Q. =Q +Q +Q, =1 today, this implies that it must have been extremely close

to 1 at earlier times (“fine tuning”).
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The solution for the equation is

1
Q1) = :
1— Qo -1 at
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Where € is the value for Q today.
If Q,=1+¢€, where € <<1, then
1

Q=—"——"—.
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At Q , where w =0, this can be approximated to

‘1 Q, =1+ea,
~1+107"¢e
as a,, ~10™. (1+z, = aL ~10*). Hence
eq
Q,,-1=107]Q, -1
So Q iscloser to 1 at 7,, = the Flatness Problem. Q must be fine-tuned to be very
close to 1 at the time of the Big Bang.
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Now consider the horizon size today compared to the horizon at t =¢,,_ .
d, (t,) _f _ 3x107h"sec
dy(te)  te  5x10" (thz)f% sec

So the region which our current causal horizon comes from contains approximately

10° causally disconnected horizons at ¢,,.. However, the CMB has an almost uniform

~10°

. .. AT _ . .
temperature over the current horizon, with - ~107. This is called the Horizon

Problem.

2. Inflation

2.1 Definition of Inflation

Inflation is a period of super-luminal expansion at very early times where d >0 (NB:
ina A universe, d >0 although this happens at late times).
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then during inflation P<—§ p. This means that the Strong Energy Condition is

violated.

If P=wp, then —1Sw<—§ 2> 1+3w<0.
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If w=—1, then we have de Sitter space.
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If —1<w<—§, then we have power-law inflation, and if w=-1 we have

exponential inflation.
One often quantifies the amount of inflation using the number of e-folds,
a
N = log[—e”“ ]
astart
so " is the amount that a has increased during the inflation epoch.

Flatness Problem
Q4

------------------------------------ Q=
= a
a.~mr arr.d a!_\ = 1
“———————
Inflation Radiation & Matter

Inflation is very small compared to radiation and matter.

In a radiation and matter dominated universe,
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where the T ’s are temperatures.
In an exponential inflation,
Q=-2HQ(Q-1)
Qend B 1 thart _ axtart ’
Qend Qstart - 1 aend

9Qo—l_ T > e_ZNQ -1

end start
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eqy

start
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Assume T, =10°GeV, T, =1eV, T,(0)=107"eV .
Q, -1
If N is sufficiently large (N = 60), then Q, =1 no matter what Q___ was.

start
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Horizon Problem

Change the variables to a, then;

« da' ? @ 3w-)
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If 5(3w —1)<-1,ie w< -3 then the integral becomes infinite, i.e.:

3/ (14w B 1
aé(H) < H' w>——

Integral = 1
oo w<—=

Particle horizon in a universe which is inflating is infinite. Hence, if the inflationary
era is sufficiently long, then the entire observable universe can come from a single
causally connected region.

Other aspects of inflation

| oL
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- matter and radiation are exponentially suppressed if a o< ™

—1 .
2. i[ H J =-2<0 during inflation
dt\ a a

Therefore during inflation the comoving Hubble radius is decreasing.

2.2 Potential Formulation & Slow Roll Dynamics
Consider a scalar field ¢(x,t), which we will call the Inflaton (particle responsible

for inflation). The action for this field is

=] d'xf-g (%awa%—vw
J-g = V—det(g#v)

1.e. the root of the determinant of the metric.
1. 1
s=[ad'x & (— 2 —(V¢) - V(¢))
:H 2 2a
Tuv = a,u¢av¢ - gyvp
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Compute the Euler-Lagrange Equations
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Switch to conformal time;
dv
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