1. A bit of history
2. What is the corona and what is the problem of coronal heating?
3. Magnetic coronal heating: the role of magnetic reconnection
4. Nanoflares scenario of coronal heating: how it works and how it can be probed observationally

Reading list:

Easy reading for general interest: … “Nearest Star”, Harvard University Press, 2001

Helium – first discovered in the stellar corona 1868 (?)
1869 – another unknown spectral line discovered, called Choronium. From calculations of the gravitational height, the mass of Choronium should be much less than Helium – a puzzle, when compared with the periodic table. Resolved in 1939; spectral line was actually a line of highly ionized iron. This meant that the temperature in the corona should be very high – a million k or so – which was a new puzzle, as the surface of the sun is much less than this and temperature decreases proportional to R. This problem is still not entirely solved.

Corona:
$T_c \sim 10^6 k$

Quiet areas of the corona (i.e. not many flares):
Number density of particles: $n_c \sim 10^8 cm^{-3}$
Energy supply required: $q_c (erg / cm^2 s) \sim 3 \times 10^5$

Active regions of the corona (flare areas):
Number density of particles: $n_c \sim 10^9 cm^{-3}$
Energy supply required: $q_c (erg / cm^2 s) \sim 10^7$

Solar luminosity: $L_\odot \sim 6.3 \times 10^{10} erg / cm^2 s$.

Due to the solar corona’s temperature, the radiation is given off as IR and X-ray.

“Old” theory of coronal heating: Acoustic heating
Main drawbacks:
- Observed acoustic energy flux is too small
• Strong correlation between the X-ray activity in the corona and the magnetic field \rightarrow magnetic nature of solar coronal activity \rightarrow Magnetohydrodynamics

Magnetic field on the surface of the sun can be measured using the Zeeman splitting of spectral lines. Sun spot – area of cooler gas – caused by the magnetic field holding the hotter gas back.

$\beta << 1$ - dynamics is governed by magnetic field.

$\beta >> 1 \rightarrow$ magnetic field is determined by convective motions.

$B \sim 10^7 G$, $L \sim 10^3 cm \rightarrow v_a \sim 10^3 km / s \rightarrow \tau_A \sim \frac{L}{v_A} \sim 10 s$

$\tau_{ph} \sim \frac{\ell_{ph}}{v_{ph}} \sim \frac{10^3 km}{1 km / s} \sim 10^3 s \gg \tau_A$

(DC currents) quasi-static evolution – force free magnetic field: $j \parallel B$

Magnetically open region (coronal hole) \rightarrow generation of … waves propagating upwards (AC currents)

A viable energy source – the maximum Poynting flux

$S_{max} \sim v_{ph} \frac{B^2}{4\pi} \sim 10^8 erg / cm^2s \gg q_e$

Magnetohydrodynamics:

\[
\vec{j} = \nabla \times \vec{B} = \mu_0 \vec{j}
\]

$\rightarrow j = \frac{1}{\mu_0} (\nabla \times B)$

\[
\rho, \nu, p
\]

$\frac{\rho d\vec{v}}{dt} = -\nabla P + \left(\frac{j}{\mu_0} \times \vec{B} \right)
\]

\[
= -\nabla P + \frac{1}{\mu_0} \left(\nabla \times B \right) \times B - \frac{1}{\mu_0} B \times \left(\nabla \times B \right)
\]

\[
= -\nabla P - \frac{1}{\mu_0} \left(\nabla \frac{B^2}{2} - \left(B \cdot \nabla \right) B \right)
\]

\[
= -\nabla \left(P + \frac{B^2}{2\mu_0} \right) + \frac{1}{\mu_0} \left(B \cdot \nabla \right) B
\]

where $\left(\frac{j}{\mu_0} \times B \right)$ is the magnetic force, $\nabla \frac{B^2}{2}$ is the magnetic pressure and $\left(B \cdot \nabla \right) B$ the magnetic tension. Call the last version of this equation (1).

$\beta = \frac{P}{B^2 / 2\mu_0}$

$\beta << 1 \rightarrow$ magnetic force dominates
\(\beta \gg 1 \rightarrow \) thermal pressure dominates.

We need another equation which governs how \(B \) evolves with time – magnetic induction equation.

Ohm’s law: \(E = \eta \cdot j \rightarrow I = \frac{V}{R} \)

Electric force = resistivity \(\times \) current

Add magnetic term: \((v \times B) + E = \eta \cdot j\)

Maxwell’s equation: \(- (\nabla \times E) = \frac{\partial B}{\partial t}\)

Hence, we have:

\[
\frac{\partial B}{\partial t} = \nabla \times (v \times B) + \frac{\eta}{\mu_0} \nabla^2 B
\]

(NB: we have assumed \(\mu_0 = 1 \))

Resistive diffusion?

Estimate: \(\nabla \times (v \times B) \sim \frac{vB}{L} \) and \(\frac{\eta}{\mu_0} \nabla^2 B \sim \frac{\eta B}{\mu_0 L^2} \)

Hence:

\[
\frac{vB}{L} \frac{\mu_0 L^2}{vB} \sim \frac{\mu_0 vL}{\eta} \rightarrow \text{Magnetic Reynold’s Number } R_m
\]

(\(R = \frac{vL}{\nu} \rightarrow \text{ Reynold’s Number} \))

Typically, \(R_m \gg 1 \).

If we neglect the last term of the equation, we get

\[
\frac{\partial B}{\partial t} = \nabla \times (v \times B) \quad (2)
\]

This can be seen as a frozen-in magnetic field: the magnetic field flows with the fluid.

It cannot change its geometrical structure / topology. This is a very strong constraint.

Called “Ideal MHD” (Ideal MagnetoHydroDynamics)

Return to (1). Take the LHS and the first part of the RHS.

\[
\rho \frac{dv}{dt} = -\nabla P
\]

\[
\rho \frac{\Delta v}{\Delta t} = -\frac{P}{\mu}
\]

\(v \sim \frac{P}{\sqrt{\rho}} \)

This is the case when \(\beta << 1 \). When \(\beta >> 1 \), then we have:

\[
\rho \frac{v}{\Delta t} \sim \frac{B^2}{\mu_0 \Delta L}
\]

\(v = \frac{B^2}{\mu_0 \rho} \sim \frac{B}{\sqrt{\mu_0 \rho}} \rightarrow \text{Alfven Velocity} \)
\((j \times B) = 0\) means that the current is flowing along the magnetic field lines, \(\rightarrow\) called force-free magnetic fields.

A viable energy source?

We know that we need to provide \(10^7 \text{ erg/cm}^2 \text{s}\), or \(10^4 \text{ J/m}^2 \text{s}^{-1}\), to the surface for active regions. Does magnetic heating provide this?

Use the Poynting vector.

\[S = \frac{1}{\mu_0} (E \times B) \]

Assume that the magnetic field is frozen, and there is no \(\eta\) - so we have \(E = -(v \times B)\). Hence:

\[S = -\frac{1}{\mu_0} (v \times B) \times B \]

\[= \frac{1}{\mu_0} B \times (v \times B) \]

\[= \frac{1}{\mu_0} \left[vB^2 - B(v \cdot B) \right] \]

\[\approx \frac{vB^2}{\mu_0} \]

Put in some numbers…

\[S \sim 10^3 \left(\frac{\text{ms}^{-1}}{4\pi \times 10^{-7}} \right) \times \left(10^{-2} [T] \right)^2 \sim 10^5 \text{ J/m}^2 \text{s}^{-1} \]

So we have enough energy. Only a fraction of this will actually be turned into heat, but there is enough available to do this.

Magnetic Reconnection

Remember that we have

\[\frac{\partial B}{\partial t} = \nabla \times (v \times B) + \frac{\eta}{\mu_0} \nabla^2 B. \]

How do we increase the dissipation?

Dissipation in a wire is \(Q = I^2 R\). In this case, we have \(Q = \eta j^2\). So if we have a small \(\eta\), we need to get a large \(j\).

From \(\nabla \times B = \mu_0 j\), we have \(j \sim \frac{B}{\mu_0 e}\).

If we use the full time-derivative equation, then the second term allows the breaking of magnetic field lines. This allows the reconnection of magnetic field lines.
Take a volume of magnetic field. The total energy will be \(W_M \sim \frac{B^2}{2\mu_0} L^3 \). The dissipation power will be \(\dot{W}_M \sim \eta j^2 L^3 \sim \eta L^3 \frac{B^2}{\mu_0^2} \frac{1}{L^2} \sim \eta L \frac{B^2}{\mu_0^2} \). So the time to dissipate all the energy will be:

\[
\tau_\eta \sim \frac{W_M}{\dot{W}_M} \sim \frac{L^2 \mu_0}{\eta}
\]

For the solar corona, this time turns out to be circa a million years. Reconnection can make this much quicker.

\[
u \cdot B \sim \frac{L B}{\mu_0 \Delta}
\]

\[
u L \sim v_A \Delta \Rightarrow u = \frac{v_A \Delta}{L}
\]

\[
\Delta = \sqrt{\frac{\eta L}{\mu_0 v_A}}
\]

\[
u \sim \frac{v_A}{\mu_0 v_A} \sqrt{\frac{\eta}{L \mu_0 v_A}}
\]

\[
S = L \mu_0 u B^2 \sim L \mu_0 B^2 v_A \sqrt{\frac{\eta}{L v_A \mu_0}}
\]

Total magnetic energy is \(U_B \sim \frac{B^2}{2\mu_0} L^3 \)

So the energy dissipation through reconnection is \(\tau_B = \frac{U_B}{S} \approx \frac{L/2\mu_0}{\mu_0 v_A \sqrt{\frac{\eta}{L v_A \mu_0}}} \ll \tau_\eta \).