PC 4602 - Relativistic Quantum Mechanics — Lecture 8

v ()= S(a)y (+)
§(@)7S(a)=a"7" (5)
57 (a)=7"S(a)y" (6)

Parity: t >t'=t, x > x'=—x,1.e. x" =a" x".

1 0 0
0 -1 0

@=y o _
0 0

satisfies a*,a", = g, =6, . Invariance requires y'(x') = Py (x), where P = P(a)
satisfies (5) and (6), and we also require P> =1,i.e. P~' = P . This is all satisfied
with

P=ny’
where n = %1 and is undetermined. Usually set = +1 (convention).

Consider a particle at rest in Dirac representation, where:

I 0
0 _
s

0) .
l//_x: etmt E——m
=[ Je 5=-m
So:
Py, =ny,
Py_=ny_

A particle at rest is in an eigenstate of P with “intrinsic parity” n (=+1 by
convention). An antiparticle at rest has intrinsic parity —7, i.e. particle and

antiparticle have opposite parities. This is verified in e'e” — ¥y, and is important in
the quark model of mesons.

Consider a particle in motion with positive energy

As
v, ()=NJE(p)+m| o-p |
E+m Xs

PV/TM(I’ﬁ) =Py (x')
=y, (1)

Xs
= n«/E(p)+ m c-p e_l(El_E )
_E+mxs
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L.e. under P transform, p ——p, s — s, phase change 7.

3.6 Interactions with Fields
Consider an EM field,

A" () =(4° (x). A(¥)

introduced by the minimal substitution

d,—d, +igA,
where ¢ is the charge. We can also consider the Lorentz scalar fields by substitution:

m— m+S(x)
where m is the mass. Both obviously leave the Dirac equation Lorentz invalient, and
give

Liv* (2, +igA, —m=S) |y (x)=0 (1)

or iaa—lf=[gc~(—iY—qé)+B(M+S)+qA°]w(X)=0 )

3.6.1 The Dirac Magnetic Moment
Consider EM fields only S(x)=0. Look for solutions of the form

v(x)= (m]e )
in Dirac representation. Substitute in (2) = 2 coupled equations:
0 (~iV ~qA)n+(qA" +m)p=Ep (4)
- (iV—~qA)9+(qA° —m)n=En (5)
Consider non-relativistic approximations for positive energies:
e=E-m<<m, qA“‘<<m

(5) becomes
1
n=-——0-(-iV-qA)p >n<<¢
2m
Substitute this into (4);

o (~V-qa) T o+a4" =20 (©)
m

Tidy up the first term using
(0-a)(c-b)=a-b+io(axb) (cf. Ex. 1)

> [ [o=(-iV-qA)-(-iV—qA)p+ic(-iV —qA)p=(A)+(B)
(B)=-qo-[Vx(Ap)+Ax Vo]
=—qa(VxA)¢
using V x (Ap)=9(Vx A)—Ax(V9).
s=ls
-2

(A)=(-iV —qA)-(=iV - qA)¢

=-V*¢+iqV - (A )+qu Vo+q° A’

, B=VxA
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0A

Exploit gauge invariance, i.e. E=-V¢—-—, B=V X A, and physics in general is
t

unchanged by ¢ — ¢ + 3—f ,A>A-Vf ie. ¢,A are notuniquely defined by V.
t

This is a popular, but not unique, choice:
Coulomb gauge: V-A=0
Then V-(49)=(V-A)¢+A-(V9)
=0
> (A)=(-V* +2igA-V+4qA° )¢

Specialize to uniform magnetic field B :
1
A=_(B-x) (Ex 1)

2igA-V =iq(Bx x)-V
=iq(xxV)B=-qB-L
since L=xX p = —i()_c X Y) . Neglecting the i% factor, x-V = angular momentum

operator.

Put it all together: Dirac equation (6) in the non-relativistic limit with £ >0 and
constant magnetic fields becomes
1 o) 0 q A®
——V +gA"—u-B+—— |p=¢€¢
2m -~ 2m

this is the Schrédinger equation (i.e. Pauli equation) with magnetic moment
u=-L(L+25)
2m

1.e. predict hitherto mysterious factor
g§=2
for pure spin. Another triumph for Dirac equation.



