
3. Equations of State 
Equations which describe the physical properties of the material in a star. 
 
3.1 Gas or solid? 
Average distance between particles 
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The kinetic energy per particle is 
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It can be estimated from the virial theorem 
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which does not depend on R. 
For the sun (

 
1M

!
 of hydrogen), !

C
/ !

k
~ 0.01 . 

For a solid, !
C
/ !

k
>> 1 

 stars are gaseous. 
 
3.2 Pressure 
What type of gas do we have? Mostly ionized. So it consists of ions and electrons, so 
we need to write the equation for pressure down twice – one for nuclei, one for 
electrons. But electrons are far more complicated than this – so the equation only 
applies for ions. 

P
ions

= n
ions
kT . 

 
Pressure is momentum transfer in all possible ways. In a star, three components need 
to be considered: 

1. Radiation pressure from photons, P
rad

 
2. Gas pressure 

a. Ion pressure P
I
 

b. Electron pressure P
e
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This assumes full ionization. 
 
3.3 Photons 
The Planck blackbody function B

!
T( )  is related to the energy density in the 

frequency range !  to ! + d! , u
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The total energy is E
rad

= !T
4
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The pressure of a photon gas is: 
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3.4 Ideal Monatomic Gas 
The well-known results for the pressure and energy density of an ideal gas are: 
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Consider a gas consisting of different nuclear species. 
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where X
i
=
!
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 is the mass fraction of element i . 

The mean atomic mass µ  is given by: 
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Commonly used notation: 
X
H
! X ; 

X
He
! Y ; 

X
I

i>2

! " Z  

(note that this Z is not charge!) 
The mean atomic mass can be approximated as: 
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where A
metals

 is average for i > 2 . 
 
For young Sun: X = 0.707 , Y = 0.274  
A ! 20   µ

I
= 1.29  

Presently in the core of the sun: X = 0.34 , Y = 0.64  
 µ

I
= 2.0  

 
 



3.5 The Saha Equation 
How fully is a gas ionized? Consider the balance between photo-ionizations and 
recombinations, for example Hydrogen: 
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Backward reaction rate ! n
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If all particles have a Boltzmann distribution with the same temperature, ionization 
fraction is set by ratio of rates. 
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which is the Saha equation. 
 
Introduce ionic species, i.e. one for each ionized version of a particle. 
The degree of ionization of ionic species i  
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where n
0

is prior to electron removal, and n
+

 after, for ionic species i . 
Electron pressure for ideal gas becomes: 
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At high T (i.e. we’re fully ionized), 
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3.6 Fermi-Dirac Equation of State 
How about a non-ideal gas? 
Electrons, protons and neutrons have spin ±1 / 2 , and are Fermions: every energy 
state can be occupied by only two particles (2 spin states): Pauli exclusion principle. 
3D separation between states: 
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The number density of particles with momentum p  and energy E p( )  is: 
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Per unit volume for fully occupied states: 
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Integrate up to full occupation. 
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If all particles are fully occupied levels, the gas is called fully degenerate. 
 
Define the function 
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What happens to F E( )  as T ! 0 ? 
T ! 0 , F E( )! 0  if E > E p

0( )  
 F E( )! 1  if E < E p

0( )  
The transition energy is called the Fermi energy Ef = E p

0( ) . It is the total energy 
including the rest mass energy of the most energetic particle. 
At T = 0 , F E( )  is a step function, and the number density of particles is given by 
equation 89. 
The pressure is given by: 

P =
1

3
vpn p( )dp

0

!

"  (91) 

Use 

ne p( )dp =
2

h
3
4! p

2
dp  p ! p

0( )  

v =
p

m
e

 

which gives the degeneracy pressure of the electron gas: 
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(Electrons become degenerate first because of their low mass). 
Fill in n

e
 and find for a non-relativistic case: 
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For relativistic gas, v ! c . Fill in pressure integral, and find: 

P
e,deg

rel
=
hc

8

3

!
"
#$

%
&'

1
3 1

2
1+ X( )

(
m

H

"

#$
%

&'

4
3

 (94) 

Define 
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Summary: Equations of State 
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At low temperatures, transition from non-relativistic to relativistic degenerate gas 
occurs at n

e
~ 10

35
m

!3 . 
 
3.7 Worked Example: White Dwarfs 
Consider a cold, fully degenerate gas of electrons T = 0,P = P

e,deg( ) . 
Assume a degenerate White Dwarf in hydrostatic equilibrium with constant density 
!
w

. 
A. Calculate its gravitational energy, W . 
Recall: 
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where M
*
= 4!R

*

3"
w

 is the total mass of the star. 
 
B. Calculate the total internal energy U . 
The total internal energy is U , which is just equal to the volume times the energy 
density E , where for non-relativistic gas: 
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… or the easy method: 



E p( ) =
p

2m
=
3

2
P  (105) 

P = 1.00 !107
"
µ
e

#

$%
&

'(

5
3

 

U = VE (106)

=
4!
3
R
3 3

2
"1.00 "107

#
µ
e

$

%&
'

()

5
3

107( )
 

In terms of M
*
 and R
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, we find: 
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C. Derive a mass-radius relation 
In hydrostatic equilibrium, we can apply the Virial Theorem. 
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Adding more mass to a cold, degenerate star makes it smaller! 
Substituting all the constants for K above we find the following radius relation for 
White Dwarfs: 
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Example of a white dwarf: Sirius B. This is in a binary star, so we can get its’ mass. 
 
Known white dwarfs have masses in the range 

 
0.5! 1M

!
, and consist of He  or 

C /O . (from seismic activities of some white dwarfs, we can tell that they have no H 
in them). 
Full ionization implies µ

e
= 2  (note that µ

e
 is the mean mass in amu per free 

electron). 
From equation (111), we find: 
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m  is about the radius of the Earth, 6.38 !106m  

 
White dwarfs have masses like the Sun, but radii like the Earth. 
 
A “black dwarf” == the Earth… 
 
The same analysis applies to neutron stars, containing degenerate neutron gas. 
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A 
 
1M

!
 neutron star has a radius of 11km ! 

 
D. Find the mass limit for white dwarfs 
As the density of a degenerate gas increases it eventually becomes fully relativistic, 
with a different equation of state. 
Degenerate electron pressure: 
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Relativistic degenerate pressure; 
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An ultra relativistic gas has a much higher pressure. Its internal energy density 
becomes: 
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and so: 
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The gravitational energy remains unchanged. 
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Applying the Virial theorem we get: 
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The mass is independent of radius! 
More exact calculations than done here give: 

 

M! = 1.456
2

µ
e

"

#$
%

&'

2

M
!

 (118) 

M
!

 is the Chandrasekhar mass – the maximum mass a white dwarf can have. 
If more mass than this is present on the star, then the star will collapse. 



 
Neutron stars will be stable, so the white dwarf will go into this form if the mass is 
too big. Another possibility is that the star will compress until it starts forming 
carbon, at which point it would explode due to the amount of energy generated. 
 
As there are no neutron stars present with a mass greater than around 2 times that of 
the sun, it is possible that neutron stars have the same effect – but this hasn’t been 
proven. 


