
4. Metals 
4.1 The Free Electron Model 
It is surprising to suggest a free-electron model at all. Charged particles at high 
densities must interact strongly with each other. But we know metals are good 
conductors of electricity and heat, so let’s suppose there are electrons free to carry 
charge and energy around inside a metal. 
 
4.1.1 Assumptions 

1. There are electrons free to move in the crystal. The number of electrons per 
atom is equal to the chemical valency (the number of electrons in the 
outermost shell of the atom). 

2. These electrons must undergo collisions, with some mean time !  between 
collisions. 

3. Between collisions, there are no interactions with other electrons or with the 
ion cores. 

4. The electrons are governed by Fermi-Dirac statistics. 
 
4.1.2 One-electron States 
Assume a crystal of cubic volume V , side L . Between collisions, the potential is 
zero. Solutions of Schrödinger’s equation are 
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Boundary conditions are that !  is zero on the faces. This implies that 
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where nx,y,z  are integers. We must allow for two electron spin states for each 
translational state, so the density of states is  
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So looking at the density of states again, we have 
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The occupancy of the states is given by the Fermi function 
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where µ  is the chemical potential. 
 
The total number of electrons (or in general, particles), N , is given by 
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If we have n = N /V , then 
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The highest occupied energy at T = 0  is called the Fermi energy ! f . 
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and the corresponding wavevector, which is the largest occupied wavevector, is called 
the Fermi wavevector k f . 
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Also define a Fermi temperature kBTf = ! f  (the temperature equivalent of the highest 
Fermi electron), and a Fermi velocity 

 
mvf = !k f , which is the fastest velocity of the 

Fermi electrons. 
 
Note that we are still using a k-space, or reciprocal space, representation. The sphere 
whose surface is defined by the wavevectors of magnitude k f  is called the Fermi 
sphere. 
 
 
 
 
 



For example: for sodium (monatomic bcc,  a = 4.23A
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) (Valence 1); 
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The fact that vf << c  justifies the use of the classical dispersion relation. 
Compare ! f  with the Coulomb energy of two electrons separated by inter-atomic 
distances, which is 3.9eV . 
Compare the melting point of Sodium 371k , which is around 1% of the Fermi 
temperature. 
 
4.1.3 Results of Free-electron model 
1. Specific heat 
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All of the changes in f !( )  happen near ! f , so ! "( )# ! " f( ) , and we can replace 

the lower limit by !" . Also substitute x = ! " µ( )# . 
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The integral is ! 2
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Note that so far, this is a more general than the free electron model. Any density of 
states at the Fermi energy can be used. In the Free Electron model, 
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This is the classical result for free particles reduced by a term of order T /Tf . Only 
electrons within an energy of k

B
T  of ! f  contribute. 

For any real metal, there is also the lattice term. 
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Plotting 
C
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 vs T 2  should give a linear relation, with an intercept of !  and a slope of 

! . 
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Sodium Na  1.09 1.38 
Gold Au  0.64 0.73 
Iron Fe  0.64 5.02 
Bismuth Bi  1.80 0.08 
 
There is enough agreement in the form (linear in T ), and in the approximate size of 
the coefficients, to say that the idea is right. The details are wrong in Fe  ( transition 
or d-band metal) and Bi  (which is a semi-metal). 
 
 
2. Electrical Conductivity 
We need to assume that after a collision, each electron travels in a random direction. 
Under the influence of an electric field E , each electron acquires a drift velocity after 
time t  of 
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If the average time since the last collision in ! , then the drift velocity 
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The current density j  is given by 
j = !ev

drift
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where n  is the number density of the electrons. 
 
The electrical conductivity, ! , is given by 
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(Ohm’s law in “fancy form”). So 
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Mean collision time 10!15

s"# $%  Metal 

T = 77k  T = 293k  
Na 170 32 
An 120 30 
Fe 32 2.4 
Bi 0.72 0.23 
 
So the electrons are moving freely throughout the metals. 
 
 
 



3. Thermal Conductivity 

If Q   is the heat flow for a temperature gradient in the z-direction, 
dT

dz
, then the 

thermal conductivity !  is given by 
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For any quantity P , the flux of P  in the z-direction given a gradient 
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 is given by 

kinetic theory, 
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Where the 1 / 3  arises from angular averaging, !  is the mean free path, and v  is the 
mean speed. 
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i.e. the energy gradient drives the heat flow. 
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At low temperatures, all the velocities are close to the Fermi velocity vf . So, 
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The ratio 
!

"T
, which is known as the Lorentz ratio, should be constant. 
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This relation is known as the Wiedemann-Franz law. It is frequently observed to hold, 
and the constant is about right. 
 

A purely classical theory gives 
9
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 times this constant. 

 



 
Metal 273k 373k 
Li 2.22 2.43 
Cu 2.20 2.29 
Au 2.32 2.36 
Fe 2.61 2.88 
Bi 3.53 3.35 
 
4.2 Hall Effect 
A current density j  flowing in a magnetic field B  generates a transverse electric field 
E
H

. The Hall Coefficient R
H

 is called the Hall Resistance. 
E
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What is the effect of collisions on the current? They provide an effective force equal 
to the rate of change of momentum. 
 

The probability of a collision in time dt  is 
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The force from the collisions plus the force from the electromagnetic field must be 0 
in steady state.  
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Split this up into the x and y directions. 
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Na 1.2 
Au 1.5 
Mg -0.4 
Al -0.3 
 
So there is some measure of agreement, but for some metals we even have the sign 
wrong. 
 
4.1.4 Review of Free-Electron Model 
Successes: 

- Form of low-T specific heat (linear in T) correct. 
- Quantitative agreement on specific heat (within 20% ) for some, but not all, 

metals. 
- Good quantitative agreement for Lorentz ratio at high T for most metals. 
- Hall effect agreement (within 50% or so) for some metals, but not all metals. 

 
Failures: 

- Doesn’t explain strong temperature dependence of the electrical or thermal 
conductivity. 

- Specific heat coefficient is not always correct. 
- Wiedemann- Franz law fails at intermediate temperatures. 
- Doesn’t explain the positive Hall coefficient in some metals. 



 
Puzzles: 

- What causes the collisions? 
- Why are there no (other) interactions in between collisions? 

 
4.2 Wavefunction in a periodic potential 
Translational symmetry means that the potential provided by the nuclei in the crystal 
is periodic. Assume that the effect of all the other electrons is to provide an additional 
potential which is also periodic. 
 
Consider a wavefunction in a one-dimensional periodic potential with time 
dependence e! i" t . 

! x,t( ) =" x( )e# i$ t  
If the wavefunction varies by a factor A  when x  increases by a , the lattice 
parameter, then the magnitude of A  must be 1, otherwise the wavefunction is not 
well-behaved. So we can write, 
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For any ! , we can find k  such that ka = ! . If we take the wavefunction at the origin 
to be !

0
, then 
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So far, this is like the development of the phonon states, but in that case the function 
is defined only for the atomic positions. This is not the case – we need to have the 
wavefunction defined everywhere. 
 
Now the wavefunction at other positions in the unit cell will be different from the 
wavefunction at the origin, but the same relationship will apply to all points related by 
a specific lattice vector. 
 
So 

! x,t( ) = u x( )ei kx"# t( )  
where u x( )  is a function with the same periodicity as the crystal. 
 
The total wavefunction is this periodic function multiplied by a traveling wave 
function which is characterised by a wavevector k . 
 
Applying the usual boundary conditions will restrict the values of k  to integer 

multiples of 
2!

Na
. 

 
k  can always be chosen to be within the Brillouin zone, but sometimes it will be 
illuminating to look at k  values in other zones. 
 
(Block’s theorem) 
 
Focusing on the spatial part of the wavefunction, and generalising to 3D, 



! r( ) = u r( )eik "r  
 
4.3 Free-Electron States in 1D K-space 
Energy of classical non-relativistic particle is quadratic in k . But k  values are related 
by ±  a reciprocal lattice vector are equivalent. 

 
This is the case of a Repeated Zone Scheme, where there is more than 1 curve is 
represented. 
 
Therefore we can represent all energies of the free particle in one Brillouin zone, that 

between !
"

a
 and 

!

a
. This is called the reduced zone scheme. 

 
Each k value corresponds to an infinite number of energies, but we can represent all 
of the free electron dispersion relation in one Brillouin zone. 
 
Note that all of the points where energies are degenerate are at zone boundaries or 
zone centre. 
 
4.4 Bragg Scattering of electrons 
If we think of the “free electron” as interacting with the potential provided by the 
crystal, it might undergo Bragg diffraction. The condition that it does so is 

Q = G = kI ! kF . 
For Bragg diffraction in 1D, this implies a reversal of k , which can happen only 
when 

2 k = G . 
This implies that Bragg diffraction may occur whenever the k value is at any integer 
multiple of ! / a , i.e. at any zone boundary or any zone center which coincides 
exactly with the condition for two states to be degenerate. One of these states is the 
incident wave, and the other is the scattered wave. 
 
We might expect the net result to be a standing wave. There are two possible standing 

waves, which differ by their phase. They are sin
! x
a

"
#$

%
&'

 and cos
! x
a

"
#$

%
&'

. 

 



 
 

cos
! x
a

"
#$

%
&'

 has antinodes near the nuclear positions, where the potential is attractive 

(negative), whereas sin
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 has antinodes in between the nuclear positions, where 

the potential is positive. Therefore the energy of the former is lower than the energy 
of the latter. 

 
 
Even small changes in the energies change the picture completely. There are now 
energies for which there are no states, which is not the case for free electrons. Also, 
we have created bands of energies which have states which are adjacent in energy. 
 



4.4.1 What is the meaning of k ? 
! r( ) = u r( )eik "r  
For a free electron, we know 

 
!k = p , but 

 
p = !i!" . So ! r( )  is not an eigenstate of 

p . 
 
p! r( ) = !k! r( ) " i!eik #r$u r( ) . So k  is related to momentum, and reduces to it 

when u r( )  is constant. We call k  the crystal momentum. 
 
4.4.2 What is the electron velocity? 
In 3D, we are looking at the group velocity. 
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So the velocity of electrons affected by the periodic potential is similar to the free 
electron value for most states, but near the zone boundary and the zone centre, the 
group velocity is reduced to 0. This is true however small the energy gap is. This is 
consistent with the picture of the Bragg scattering causing standing waves. 
 
Thu main conclusion is that electrons are still free to travel with non-zero velocity 
through the crystal in the presence of a periodic potential. These are eigenstates of the 
energy which involve electrons with non-zero velocities. The nuclei and the other 
electrons may affect the velocity, but they do not reduce it to zero, except for very 
specific states. 
 
We say we have “nearly free” electrons. This is the “Nearly Free Electron Model”. 
 
4.5 Effective Mass 
Near the zone boundary and zone centre, the change in the group velocity from the 
free electron value is equivalent to altering the mass. The new value is called the 
effective mass. Sometimes it can be negative. 
 
4.6 What are the collisions? 
Collisions with what? Take Na at 77k . The collision time is around 1.7 !10"13

s . The 
Fermi velocity is around 106ms!1 . So the mean free path is around 
1.7 !10

3
Angstroms , and the nearest neighbour distance is around 3.7Angstrom . 

 
Therefore the collisions are not due to the ion cores. The atoms in a perfect structure, 
and indeed the average effect of the other electrons, do not give rise to collisions. It is 
the differences from the perfect structure which cause collisions. 
 
Defects 
Such as impurities, vacancies, dislocations (imperfections in the atomic layers) can 
cause collisions, but they are not temperature dependent, and they are generally 
elastic as there is no change in the electron energy. 
 
Phonons 
These can cause scattering of the electrons, which depends on the number of phonons 
(which changes with temperature), and is inelastic (phonon creation or absorption). 
 
Why does Wiedeman-Franz Law fail? 
Low temperatures 



No phonons thermally excited, so dominant scattering process is defect scattering. 
Degrades the heat current by reversing the direction on scattering of electrons with 
higher energy than average, and with lower energy. Degrades the electrical 
conductivity by randomizing the direction after acquiring a drift velocity.  
Processes are similar but different in detail, so Lorentz ratio is constant, but not 
exactly the free electron value. 
 
High temperatures 
T > T

D
 the Debye temperature. 

Many phonons thermally excited. Inelastic scattering can change both energy and 
randomize the direction of the electrons, so mean collision time is really the same for 
both electrical and thermal currents. 
 
In between, only low energy phonons are populated, which have small wavevectors 
(acoustic modes near zone centre). Therefore complex behaviour. 
See Hook and Hall, pages 90-97. 
 
4.7 Nearly-Free Electron Model 
Free electron model failures: 

- Does not explain why the conductivity is strongly temperature dependent. 
- Although the free electron model got the form of the specific heat about right, 

the coefficient was not always correct. 
- W-F law fails at intermediate temperatures. 
- Does not explain positive Hall coefficients. 

 
Nearly-free electron model: 

- Collisions are with predominantly with phonons at high temperature, and the 
number of phonons are strongly temperature dependent. 

- An effective mass change will change the specific heat coefficient. 
- At intermediate temperatures, we get a complex interplay between the 

collision mechanisms. 
- Effective mass may be negative, which would explain the positive Hall 

coefficients. 
 
4.8 Energy Bands 

 
Energies with states are called bands. Energies without states are called band gaps. 
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These states are eigenstates, so small perturbations (e.g. applied electric or magnetic 
field) can change the electrons from one state to a neighbouring one in energy. Band 
gaps prevent a change of state, without some substantial and appropriate perturbation 
(e.g. photon absorption). 

 
Fermi energy is determined by 

N = ! "( ) f "( )d"
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The Fermi level lies either within a band, or within a band gap.  
 
4.8.1 Full Bands 
All states occupied at T = 0k . Consider a 1D slice: 

 
For any state the x-component of the velocity v

x
 is given by 
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The mean total velocity is found by integrating over all states. 
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 are related by a reciprocal lattice vector, they represent the same 
wavevector k , so v

x
 is always zero. The same result follows in 3D. Both the 



mathematics, and the symmetry, shows that the mean velocity must be zero. 
Therefore a full band does not contribute to conduction. 
 
4.8.2 Metals, Insulators and Semiconductors 
If the Fermi level does not lie within a band, all of the bands are either full or empty 
at T = 0 . This is an insulator. 
 
If the Fermi level lies within a band, then small perturbations (e.g. E field) can cause 
an imbalance in velocities, so electrons may then contribute to conduction. This is a 
metal. 
 
If an insulator has the Fermi energy within a small band gap (small cf. k

B
T ), then at 

non-zero temperature, electrons can be thermally excited from the full to the empty 
band. Both bands may then contribute to conduction. This is called a semiconductor. 
 
The nearly free electron model has done away with assumption 1 of the free electron 
model. It provides a basis for dealing with insulators as well as metals, and even 
semiconductors. It treats all bonding on the same level. The difference arises as a 
result of the position of the Fermi level. 
 
Bands in Two-Dimensions – Overlapping Bands 
Consider a crystal with a square lattice. 
(4) 
The energies of the bands may overlap. The first band is not full at the second band 
contour, but the second band has some occupied states. Thus the Fermi energy can lie 
in more than one band at once, if the bands are overlapping. 
 
Number of Conduction Electrons 
Each band has a state for each k-value in the BZ, which is equal to the number of 
primitive unit cells, N . So 2N  electrons may be accommodated in each band, where 
the 2 is due to the two possible spins of the electrons. 
 
The band (or bands if overlap) in which the Fermi level lies has a number of 
electrons, which are the conduction electrons. 
 
For the Fermi level to lie between bands, the total number of electrons must be a 
multiple of 2N . So a primitive unit cell must contain an even number of electrons. 
Conversely, a primitive unit cell with an odd number of electrons must give rise to a 
metal. 
 
However, if there are overlapping bands, an even number of electrons in each 
primitive unit cell may also give rise to a metal. 
 
Material Structure Basis Number of 

electrons in 
basis 

Type 

Na Monatomic 
bcc 

Na 11 Metal 

Al Monatomic fcc Al 13 Metal 
Au Monatomic fcc Au 79 Metal 



V Monatomic 
bcc 

V 23 Metal 

NaCl Rocksalt Na
+
Cl

!  28 Insulator 
Diamond Diamond 2C  12 Insulator 
Ca Monatomic fcc Ca 20 Metal 
Mg Hcp 2Mg 24 Metal 
Fe Monatomic 

bcc 
Fe 26 Metal 

Si Diamond 2Si 28 Semiconductor 
GaAs Zincblende GaAs 64 Semiconductor 
 
4.9 Application of Nearly-Free Electron Model to Metals 
The existence of extended states with non-zero velocity depends only on having a 
periodic potential. What happens to the “core electrons”, e.g. 1s  electrons in Na  
1s

2
2s

2
2p

6
3s

1( )  

 
Tend to become less dispersive, and the curvature goes to 0, i.e. zero velocity. 
For core states, all energies are well below Fermi level there is no contribution to 
conduction to specific heat. So the fact that the approximation is poor for these states 
does not matter. 
 
What about the “valence electrons”, e.g. 3s1  in Na? 
There are two factors which conspire. 
Firstly the potential is strongest near to the ion cores (nuclei), but the Pauli principle 
tends to exclude conduction electrons as there are already many core electrons states 
there. 
Secondly, “other electrons” which are free to move tend to “screen” the potential. The 
net effect is that, for the s-electrons at least, the nearly free electron theory is rather 
good. Less so for p and d electrons. 
 
4.10 Fermi Surfaces 
The set of wavevectors k f{ }  which describe the states whose energy is the Fermi 

energy is a sphere for free particles. 
 



In the presence of the periodic potential, this set of wavevectors is no longer a sphere; 
it can be a more complicated surface. It may even be multiply-connected. This set of 
wavevectors is called the Fermi surface. 
 
Alkali metals (Na, K, etc) 
Monatomic bcc. One electron per atom. Free electron Fermi sphere has magnitude 
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. Then the 

occupied states are not affected much at all by the periodic potential. So Fermi surface 
is in fact almost spherical. We therefore expect these metals to behave like free-
electron metals.  
 
Noble metals (Cold, silver, copper) 
Full d-shell and one s-electron. Monatomic fcc, so nearest zone boundary is in 111[ ]  

with magnitude 
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In this case the energy changes are large enough to change the slope of the Fermi 
surface, and create a “neck” on the surface. 
For the most part, this still looks like a free-electron Fermi surface but the necks 
create new possibilities for the behaviour of electrons at the Fermi level. 
The free electron values are still mostly quite good for the noble metals. 
 
4.11 The Semi-Classical Model 
Given the band structure (the dispersion relation !

n
k( ) ). 

Assume that electrons undergo collisions without making inter-band transitions. 
Continue to assume that we have Fermi-Dirac statistics. 
How far can we get by treating the electrons as classical particles? 
Velocity of the particle: 
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Rate of change of momentum: 
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dk
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using the classical Lorentz force. 
 
This model is called the Semi-Classical because it treats the dynamics classically. It 
can be justified in detail, provided (from a full quantum mechanical approach): 

1. The mean free path is not too small 
2. The fields (E  and B ) are not too rapidly varying either in time or in space. 

 



DC E-Field 
Take the second equation, and integrate it. 

 

k t( ) = k 0( ) !
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Without collisions, k  would increase continuously. As it approaches k

ZB
, the velocity 

reduces to 0, then it reverses. The effect of collisions is to prevent the continual 
increase of k , but to balance the external force by a small shift in all of the states. 
This is equivalent to adding a drift velocity to all of the electrons. 
The acceleration of the particles is (switching to a 1D model) 
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Note that if the Fermi energy falls in a region where the second derivative is negative, 
the drift velocity is in the opposite direction from what you would expect. 
 
Effective mass: Holes 
For a free electron, the energy and acceleration depend on the difference of k  from 
the minimum !k . 
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Near to a local maximum of the energy, 
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i.e. a maximum, then some dependence on !k( )
2  through a Taylor expansion. We can 
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Therefore the response is as if it were a free particle, but with a negative mass. We 
could treat it as a free particle if the force were in the opposite direction and it had a 
positive mass. This would be so if it had a positive charge +e( )  and a positive mass 

+m
*( ) . This is a hole. 

Near any turning point in the dispersion relation, !tp  
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and the effective mass in general is then 
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Under certain circumstances, when 
!
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 is negative at the Fermi level, it may be 

advantageous to think of the charge carriers not as negative electrons with negative 
mass, but as positive holes with a positive mass. 
 
Another picture from holes 
The current density is the mean velocity times the charge. 
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As the integral of the velocity over all of the states is 0, we can write 

j = +e v k( )
dk
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"  

This means that the current can be considered to be carried by positively charged 
particles which are in the states unoccupied by electrons. Note that these may have 
positive or negative mass; there is no reason to choose one or the other. 
 
Under certain circumstances, particularly when the second derivative is negative at 
the Fermi level, it may be advantageous to think of the charge carriers as positive 
holes with positive mass, occupying the states which are in fact unoccupied by 
electrons in a band. 
 
DC B Field 
The force is the cross-product of the velocity and B . The velocity is the gradient of 
the energy with respect to k , so the force acts to move the electrons on energy 
contours orthogonal to the velocity and B . 



 
i.e. electron orbits in the opposite sense. The sense is that which would be followed 
by a positively charged free particle. 
Can now have  

- Free-electron-like orbits 
- Hole orbits (positive charge) 
- Open orbits – particles oscillate. 

 
4.12 Metal Properties in the Semi-classical Model 
1. Specific Heat 

cv =
! 2" # f( )kB2T

3V
 

But now we have no simple expression for the density of states at the Fermi level, 
! " f( ) . For example, d-band metal (Fe)  



 
For Fe, !  is 8 times the free electron value. In some materials (so-called “heavy 
fermion”), !  may be up to 1000 times the free electron value. 
 
2. Electrical Conductivity 
The electrons respond like free particles, but with the mass replaced by the effective 
mass m* . 
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3. Thermal Conductivity 
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Note that the Lorentz ratio 
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remains the same, as the effective mass does not appear in it. 
 
4. Hall Effect 
The electron orbits in B  fields may look like positive or negatively charged particles. 
For complicated Fermi surfaces, both electrons and holes. 
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4.13 Summary of Metals 
We can explain a great many properties of metals if we assume there are nearly free 
electrons, where the effect of the nuclei and the other electrons can be considered as a 
periodic potential. This affects the dispersion relation, and may form complicated 
Fermi surfaces. The curvature of the bands may change the effective mass of the 



electrons. Collisions are with things which cause deviations from the periodicity of 
the crystal – defects and phonons. 


