PC 3101 — Quantum Mechanics — Section 1

1. 1D Schrodinger Equation
G chapters 3-4.

1.1 the Free Particle

V=0

o a‘l’(x,t) _ _i BZLP(x,t)
ot 2m  ox’

‘I’(x,t) = Aei(kx_a”)

k’h
where w =—.
2m

Normalization must happen:

Jop ) =1
Here, however:
J:‘A‘z dx — oo
As this integral represents the probability that the particle can be found, this must

always be equal to 1 — anything other than this, and it cannot represent a physical
model.

1.2 Wave Packets
Wave packets have to be used to avoid this.
A single plane wave cannot describe a quantum particle, but a wave packet can.

v(x)=[a(k)ear
> g(k) is the Fourier transform of l//(x) .

AxAk 21
AxAp > h

(uncertainty principle)

1 = 4 1 (= L
=— k)e“dk=—| hd
vl == (k) ak == o (p)e"

- 1 o0 Bt
lP(px) = EJ‘_WT(X)E hdx

The latter part is where the wave function depends on the momentum, rather than the
position or time. This is denoted by the tilde.

- 2
P(p)= \w(p)\ dp
This is the probability that the particle has momentum between p and p+ dp.

1.3 Time independent potentials
0¥ (x,t B 07 (x,t
Zh#(x,t) = —%% + V(x)‘l’(x,t)

Separation of variables — let ‘P(x,t) = T(t)l//(x) .
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1 dT _ih_deI// +V(x)

i
T dt v 2m dx’
Let E be the constant here.

9L~ pr (1.3-1)
dt

n d'y
+V =F 1.3-2
Bowars (x)w =Ey (1.3-2)

The solution to (1.3-1) is:
iEt
T (t) =Ade "
For (1.3-2),
h dy’ A
x)\ylx)=Hy=Ey.
om dx’ ( )W( ) v v
This is the Time Independent Schrédinger Equation. It is an eigenvalue problem
involving the Hamilton operator. The complete solution is:
iEt

‘P(x,t) = Al//(x)e_7 .

Condition l//(x) must satisfy to correspond to a physically meaningful wave function.

1) l//(x) must be single-valued.

Z q/(x)‘z must be finite.

3) l//(x) must be continuous everywhere.

d
_‘// is continuous everywhere except at an infinite discontinuity of the

potentlal
= ?

infinite wall

1//1(0) - l/’2(0)

@ﬁ

v,(0)=v,(0)
dy,(0) _ ay,(0)
dx dx

1.4 Infinite square well
0 —a<x<a

(x)= {oo o
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ke x —kyx
Vi = Ae" + Be

2m

2

kl =—h—2E

For E >0, k, is purely imaginary.

l//l(x) = Acoskx + Bsinkx

2mE

o

1/_|J3

- 0O «@
l//l(—a)zo, l//l(a)=0.
Acoska+ Bsinka=0 (xza)

Acoska— Bsinka=0 (x = —a)

If sinka =0, then;
ka=nr
n=0,x1,12,...

If coska =0, then:

where k=

=_n +1,43,45,..
Acos—x n=13,5,..

Bsm—x

2
vl =
2

J._a‘l//l(x ‘ dx =1

fa‘A‘z cos’ %x dx =1

J:‘B‘z sin’ %xdx =1
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R niwx
J cos’—dx=a— A=

-

2a
g r127r22)‘12
" 8a’m
1
A=B=— 9

1.5 Probability current
P (x,t) =
the probability of finding the particle at time ¢ between x and x + dx.
Probability current:

¥V I¥*
i W*—0——¥ | (1.5-1
](x,t) 21’1’”( ox ox ) ( )

Replacing (1.5-1) into the Schrédinger equation, we obtain:
oP(x,t) djlx,t

(1) | Uxt) _

ot ox

VvV

b
L > dxza . P(x,t)
This is the total probability in [a,b] .

=—J —] xt dx ](a t) (b,t)
Example. attime 1 =0,

l//(x) =ce™ =ce "

: 2 P,
xX)=|c| —=
) =|d £
For a particle traveling in the x-axis at velocity v, what is the flux?
j(x) =vA where A is the density of the particle.

zp t
Then a plane wave ce " is equivalent to a beam of particles with density ‘c‘

1.6 Finite Well
We want to solve

n dy
+ =F
2m dy? v(x)l// 4
for

0 —a<sx<a

r)-{y

0
Letregion 1 = —a<x<a,region 2 =<-—a,region3 =<a.
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kyx —kyx
y,=4e" +Be
v, = Azekzx + Bzeszx
v, = @ek‘x + B3e7k3x
Replacing into the TISE, we obtain:

2m

2 2

ké=@=%ﬂn—@
2mE

2

kl == hZ

If the energy is positive, then:

[2mE
k=i | T2 = +ik
h

Conditions for l//(x):
Vi (a) =Y (a)

Vi (—a) =V, (—a)
As the jump in the potential is finite, rather than infinite, we must require:
dy, (a) _ dl//3(a)

dx dx
dy, (—a) _ dy, (—a)
dx  dx
For the bound states (E < VO) ;
k,=k,= i—T(VO — E) = p (areal, positive number.)

v, =Ae”" +Be™

v, = 1436”" + B3e_"x

B, must be zero, otherwise that exponential will diverge. The same for 4,.

Y, = A sinkx+ B coskx

v, =4,

V,=Be"™

We obtain non-trivial solutions only for certain values of £ and p. Through a little
algebra:

2y, -k
i
tan ka =
k
tanka = — k
2mV.
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For the unbound state, £ >V, .

2m|( V.
kZZZkSZZ_T[ Oj
h\E
+7 2Zm +7
k2=k3=_l ?(VO—E)=_IG
k=i | 22E _ ik
/]

We are using a stream of particles ¢ of density 1 coming from —oo, going to +,
and seeing what happens when they arrive at the potential well.
Solutions:

Y, = A coskx + b sin kx

1/12 — eio‘x + Re—io‘x
WS — Teio‘x
Incident beam of density 1 (€*), with a reflected beam of density R (Re™*). Also, a

transmitted beam of density T (7e").
The extra term in Y, makes the equation inhomogenous.

Now we have four inhomogeneous equations for R, 4, B, and T .. We then find

solutions for any k, and then for any energy.
We obtain:

e (k* — 0 )sin(2ka)
R=
2ko cos(2ka)— i(k* + 62 )sin(2ka)
B e%2ko
- 2ko cos(2ka) - 1'(k2 - O'Z)Sin(2ka)

T

2 2
‘R‘ and ‘T ‘ are proportional to the ratios of reflected and transmitted flux of

particles to the incident flux.

When E>>V , then 0 ~k,and R—0.
When E—V ,then 0 —0 and T —0.

2 2h2
If 2ka=nr, then E =V, +
8ma

R=0T=1
This is called transmission resonance.

1.7 Potential Barrier

ofix
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E>V,
Similar to finite potential well.
E <V,

l//z — eiaz + Re—iax
v, = Alek‘x +Be ™
1 1

W3:T€iox

where o = ZZZE
2

12=h_T(VO_ )
2m

k= (K-E)=k

hl i (k* + 0 )sinh(2ka)
~ 2kocosh(2ka) - i(k* - 0 )sinh(2ka)

e " 2ko

- 2ko cosh(2ka)—i( k* — 6? )sinh (2ka)
‘T‘z _ (20‘1{)2

(02 + &2 )sinh® (2ka) + (20k)
(DNLT)

So,as V, — oo,

k — oo = sinh2ka — . Therefore, T — 0.

a—> o > sinh2ka — o . Therefore T — 0.
160°k>

—e .

Tf =
- (62+k2)

For 2ka >>1,

Example, V, =2el’, 2a =1 Angstrom.

()  Electron ~~—2%_ 4 7" ~0.78
k /VO - E
(i)  Proton 4 =104 T =4x10™.

k- J1890(v, - )

... much more likely to find an electron.



