
PC 3101 – Quantum Mechanics – Section 1 

1. 1D Schrödinger Equation 
G chapters 3-4. 
 
1.1 the Free Particle 
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Normalization must happen: 
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As this integral represents the probability that the particle can be found, this must 
always be equal to 1 – anything other than this, and it cannot represent a physical 
model. 
 
1.2 Wave Packets 
Wave packets have to be used to avoid this. 
A single plane wave cannot describe a quantum particle, but a wave packet can. 
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The latter part is where the wave function depends on the momentum, rather than the 
position or time. This is denoted by the tilde. 
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This is the probability that the particle has momentum between p and  p + dp . 
 
1.3 Time independent potentials 
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Separation of variables – let 
  
! x,t( ) = T t( )" x( ) . 
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Let E be the constant here. 
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The solution to (1.3-1) is: 
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For (1.3-2), 
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This is the Time Independent Schrödinger Equation. It is an eigenvalue problem 
involving the Hamilton operator. The complete solution is: 

   
! x,t( ) = A" x( )e
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Condition 
 
! x( )  must satisfy to correspond to a physically meaningful wave function. 

1) 
 
! x( )  must be single-valued. 

2) 
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3) 
 
! x( )  must be continuous everywhere. 

 

d!

dx
 is continuous everywhere except at an infinite discontinuity of the 

potential. 

 
infinite wall 
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1.4 Infinite square well 
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For   E > 0 , 
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1
 is purely imaginary. 
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  Acos ka + Bsin ka = 0  
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1.5 Probability current 
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dx  probability density. 

the probability of finding the particle at time  t  between  x  and  x + dx . 
Probability current: 
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 (1.5-1) 

Replacing (1.5-1) into the Schrödinger equation, we obtain: 
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For a particle traveling in the x-axis at velocity v, what is the flux? 

 
j x( ) = v!  where !  is the density of the particle. 

Then a plane wave   ce
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1.6 Finite Well 
We want to solve 
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Let region 1 =  !a < x < a , region 2  =< !a , region 3  =< a . 
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Replacing into the TISE, we obtain: 
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If the energy is positive, then: 
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! x( ) : 

  
!

1
a( ) =!

3
a( )  

  
!

1
"a( ) =!

2
"a( )  

As the jump in the potential is finite, rather than infinite, we must require: 
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For the bound states 
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We obtain non-trivial solutions only for certain values of  k  and ! . Through a little 
algebra: 
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For the unbound state, 
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We are using a stream of particles  ei! x  of density 1 coming from !" , going to +! , 
and seeing what happens when they arrive at the potential well. 
Solutions: 
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Incident beam of density 1 ( ei! x ), with a reflected beam of density R (  Re
! i" x ). Also, a 

transmitted beam of density T ( Te
i! x ). 

The extra term in 
 
!

2
 makes the equation inhomogenous. 

Now we have four inhomogeneous equations for  R , 
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solutions for any k, and then for any energy. 
We obtain: 
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particles to the incident flux. 
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  R = 0,T = 1 
This is called transmission resonance. 
 
1.7 Potential Barrier 
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Similar to finite potential well. 
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(DNLT) 
So, as 
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Example, 
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… much more likely to find an electron. 


